大家好,感谢邀请,今天来为大家分享一下人工智能 画像的问题,以及和人工智能 画像图的一些困惑,大家要是还不太明白的话,也没有关系,因为接下来将为大家分享,希望可以帮助到大家,解决大家的问题,下面就开始吧!
本文目录
你想象中的人工智能是什么样子的?目前已经实现的又有哪些?
1.什么是人工智能
人工智能(ArtificialIntelligence):它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。1956年由约翰.麦卡锡首次提出,当时的定义为“制造智能机器的科学与工程”。人工智能目的就是让机器能够像人一样思考,让机器拥有智能。时至今日,人工智能的内涵已经大大扩展,是一门交叉学科。
2.人工智能的层次结构
基础设施层:回顾人工智能发展史,每次基础设施的发展都显著地推动了算法层和技术层的演进。从20世纪70年代的计算机的兴起,80年代计算机的普及,90年代计算机运算速度和存储量的增加,互联网兴起带来的电子化,均产生了较大的推动作用。到21世纪,大规模集群的出现,大数据的积累,GPU与异构/低功耗芯片兴起带来的运算力的提升,促成了深度学习的诞生,点燃了人工智能的爆**潮,其中海量的训练数据是人工智能发展的重要燃料。
算法层:机器学习是指利用算法使计算机能够像人一样从数据中挖掘出信息,而深度学习作为机器学习的一个子集,相比于其他学习方法,使用了更多的参数、模型也更复杂,从而使得模型对数据的理解更加深入也更加智能。
计算机视觉:计算机视觉的历史可以追溯到1966年,人工智能学家Minsky在给学生布置的作业中,要求学生通过编写一个程序让计算机告诉我们它通过摄像头看到了什么,这也被认为是计算机视觉最早的任务描述。计算机视觉借鉴了人类看东西的方法,即“三维重构”与“先验知识库”。计算机视觉除了在比较成熟的安防领域外,也应用于金融领域的人脸识别身份验证、电商领域的商品拍照搜索、医疗领域的智能影像诊断、机器人/无人车上作为视觉输入系统等。
语音处理:让机器学会“听”和“说”,实现与人类的无障碍交流一直是人工智能、人机交互领域的一大梦想。1920年生产的“RadioRex”玩具狗可能是世界上最早的语音识别器,第一个真正基于语音识别系统出现在1952年,AT&T贝尔实验室开发的Audrey的语音识别系统,能够识别10个英文数字,正确率高达98%。比如AppleSiri,Echo等。
自然语言处理:人类的日常社会活动中,语言交流是不同个体间信息交换和沟通的重要途径。对机器而言,能否自然的与人类进行交流、理解人类表达的意思并作出合适的回应,被认为是衡量其智能程度的一个重要参照。
规划决策系统:人工智能规划决策系统的发展,一度是以棋类游戏为载体的。比如,AlphaGo战胜李世石,Master对顶级选手取得60连胜,机器人,无人车。
3.人工智能应用场景
3.1.语音处理
?语音处理主要是自动且准确的转录人类的语音。一个完整的语音处理系统,包括前端的信号处理、中间的语音语义识别和对话管理以及后期的语音合成。
–前端处理:说话人声检测,回声消除,唤醒词识别,麦克风阵列处理,语音增强等。
–语音识别:特征提取,模型自适应,声学模型,语言模型,动态解码等。
–语义识别和对话管理:更多属于自然语言处理的范畴。
–语音合成:文本分析、语言学分析、音长估算、发音参数估计等。
?应用:包括医疗听写、语音书写、电脑系统声控、电话客服等。
?未来:真正做到像正常人类一样,与他人流畅沟通,自由交流,还有待时日。
3.2.计算机视觉
?计算机视觉指计算机从图像中识别出物体、场景和活动的能力,包含图像处理、识别检测、分析理解等技术。
–图像处理:去噪声、去模糊、超分辨率处理、滤镜处理等。
–图像识别:过程包括图像预处理、图像分割、特征提取、判断匹配,可以用来处理分类、定位、检测、分割问题等。
–图像理解:本质是图像与文本间的交互,可用来执行基于文本的图像搜索、图像描述生成、图像问答等。
?应用:
–医疗成像分析被用来提高疾病的预测、诊断和治疗。
–在安防及监控领域被用来指认嫌疑人。
–在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多信息。
?未来:计算机视觉有望进入自主理解、分析决策的高级阶段,真正赋予机器“看”的能力,在无人车、智能家居等场景发挥更大的价值。
3.3.自然语言处理
?自然语言处理的几个核心环节:知识的获取与表达、自然语言理解、自然语言生成等,也相应出现了知识图谱、对话管理、机器翻译等研究方向。
–知识图谱:基于语义层面对知识进行组织后得到的结构化结果。
–对话管理:包含闲聊、问答、任务驱动型对话。
–机器翻译:由传统的PBMT方法到Google的GNMT,流畅度与正确率大幅提升。
?应用:搜索引擎、对话机器人、机器翻译、甚至高考机器人、办公智能秘书。
4.AI、机器学习、深度学习的关系
4.1.人工智能四要素
1)数据
如今这个时代,无时无刻不在产生大数据。移动设备、廉价的照相机、无处不在的传感器等等积累的数据。这些数据形式多样化,大部分都是非结构化数据。如果需要为人工智能算法所用,就需要进行大量的预处理过程。
2)算法
主流的算法主要分为传统的机器学习算法和神经网络算法。神经网络算法快速发展,近年来因为深度学习的发展到了高潮。
3)算力
人工智能的发展对算力提出了更高的要求。以下是各种芯片的计算能力对比。其中GPU领先其他芯片在人工智能领域中用的最广泛。GPU和CPU都擅长浮点计算,一般来说,GPU做浮点计算的能力是CPU的10倍左右。
另外深度学习加速框架通过在GPU之上进行优化,再次提升了GPU的计算性能,有利于加速神经网络的计算。如:cuDNN具有可定制的数据布局,支持四维张量的灵活维度排序,跨步和子区域,用作所有例程的输入和输出。在卷积神经网络的卷积运算中实现了矩阵运算,同时减少了内存,大大提升了神经网络的性能。
4)场景
人工智能经典的应用场景包括:
用户画像分析基于信用评分的风险控制欺诈检测智能投顾智能审核智能客服机器人机器翻译人脸识别4.2.三者关系简述
人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法及应用系统的一门新的技术科学。
机器学习:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。是人工智能的核心研究领域之一,任何一个没有学习能力的系统都很难被认为是一个真正的智能系统。
深度学习:源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
全息宇宙ai画像怎么做
要创作一幅AI绘画全息宇宙的作品,你可以使用以下步骤:
1.收集图像素材-浏览科幻电影、星空照片、行星和恒星的图像,以及其他与宇宙相关的素材,以收集灵感。
2.选择合适的AI工具-你可以使用DeepDream、GAN、NeuralStyle等AI工具,这些工具可以使用神经网络算法生成图像,使你得到更具创造性的作品。
3.制定构图-使用绘画软件如Photoshop或Procreate设计构图,考虑太空中的形状、颜色、纹理和光线,以帮助你创建一个真实的虚拟世界。
4.使用AI绘图工具-将你的构图转换为线稿或草图,然后使用AI绘画工具去填充、细节、照明和纹理等来完成图像。
5.添加动态效果-加入运动模糊效果,让星云和恒星的轻轻移动,为你的图像增添更多的生命力和动态效果。
6.完善和沉寂-在整个过程中调整和改进你的作品,保持耐心,直到你满意为止。将细节和动态效果完善后,你可以为你的作品加上音乐或声效来增强沉浸感。
最后,你可以选择将你的作品发表于社交媒体或线上艺术平台上与其他艺术家分享,也可以将作品打印或制作成动态图或视频,以拓展它们的传播方式。
怎么让ai画特定人物
要让AI画特定人物,需要训练一个针对该人物的人脸图像识别模型,并使用生成对抗网络(GANs)等技术进行画作生成。具体步骤如下:
收集该人物的一些图片,建立一个人脸识别模型,用于自动识别该人物的面部特征。
收集一些与该人物相关的艺术作品,用于生成对抗网络的训练。
使用生成对抗网络(GAN)算法,在输入的随机数和人物特征向量的基础上生成一张画作。
调整生成对抗网络的超参数,比如学习率和训练轮数等,以获得更好的生成效果。
需要注意的是,这种方法需要大量的训练数据和计算资源,因此实现起来比较困难。如果只是需要简单地生成一张该人物的画像,也可以使用一些现成的深度学习模型,比如人脸转换模型或风格迁移模型,将输入的照片转换为特定的风格或画风。这些模型可以在一些深度学习框架中使用,如TensorFlow或PyTorch等。
ai绘画怎么变成女的
ai绘画这样变成女的
1、将人物提取出来,肖像中的纯白色背景可以很容易地提取出人物。用快速选择工具(W)。
2、将头部和衣服部分进行隔离。切出人物特征的各个元素。身体和衣服层应遵循女的衬衫领口,这样就可以变成女的了
好了,本文到此结束,如果可以帮助到大家,还望关注本站哦!