大家好,关于人工智能学科机构很多朋友都还不太明白,不过没关系,因为今天小编就来为大家分享关于人工智能学科机构设置的知识点,相信应该可以解决大家的一些困惑和问题,如果碰巧可以解决您的问题,还望关注下本站哦,希望对各位有所帮助!
本文目录
人工智能学科体系框架
从人工智能技术的学科体系结构来看,人工智能人才需要构建三大块知识基础,其一是数学基础;其二是计算机基础;其三是人工智能平台基础,所以学习人工智能知识不仅知识量比较大,难度也相对比较高。
数学基础是学习人工智能技术的重要前提,人工智能领域的诸多研究方向都离不开数学知识,比如机器学习、计算机视觉、自然语言处理等等。数学基础涉及到高等数学、线性代数、概率论等内容,可以说数学知识的掌握情况对于人工智能知识的学习会起到非常重要的作用。
以机器学习为例,机器学习涉及到数据收集、算法设计、算法实现、算法训练、算法验证和算法应用等多个环节,算法是机器学习的核心,所以学习机器学习的重点就是对于算法(设计)的认知能力,而算法设计的基础就是各种数学知识的应用。当前有不少数学(统计学)专业的毕业生会考研人工智能方向,这也是不错的选择。
计算机知识也是人工智能知识体系的重要组成部分,由于人工智能领域涉及到大量的计算机知识,所以长期以来,计算机专业也是培养人工智能人才的主要渠道之一。从当前的人工智能技术体系结构来看,主要涉及到操作系统、计算机网络、编程语言、算法设计、数据结构等计算机专业知识。
人工智能平台涉及到的内容非常多,不仅涉及到大量人工智能基础知识,同时也涉及到不同研发方向的相关知识,包括机器学习、计算机视觉、自动推理等等。初学者应该根据自身的知识结构和兴趣爱好,选择一个主攻方向。
第五轮人工智能学科评估排名
人工智能学科评估,A+类,学校代码10614,电子科技大学。学校代码10701,西安电子科技大学。A类,学校代码10001北京大学。
1003清华大学10286东南大学。
10013北京邮电大学。
10246复旦大学,10248上海交通大学。A-类,10284,南京大学10335浙江大学。
南开大学人工智能专业排名
属于B级水平,排名23名左右。
人工智能专业排名前十的大学如下:
1、电子科技大学
2、西安电子科技大学
3、北京大学
4、清华大学
5、东南大学
6、北京邮电大学
7、复旦大学
8、上海交通大学
9、南京大学
10、浙江大学。
人工智能门派有哪些
1.符号派
符号派的灵感来源于逻辑学、哲学。一定程度上来说,是最“计算机科学”的,他们的目标是填补已有知识中的空缺部分。他们的工作跟科学家的工作模式类似:做大量观察,然后提出假设来解释他们,通过后续的论证来看是合理的或者不合理的。
自1955年人工智能(ArtificialIntelligence)被正式提出以来,符号派就存在了,如上所述,都是基于规则的系统,丝毫没有“学习”的能力。
这个门派的主打算法是反向推论(InverseReduction):通过已经收集的数据来创建一些规则,然后用规则来推断将来要发生的事情。然而这个理论有个非常明显的缺陷,你知道在哪里吗?
2.连接派
连接派是在上个世纪80年代涌现,灵感来源于模拟人脑:它通过模拟人脑的工作方式来让机器获得知识。人脑会存储数据,通过每天不断获取新的数据来积累学习。这些记忆的数据的权重各不相同,而且当再次被使用到时会被加强。
这种算法的问题是人脑非常复杂,想要完整模拟出人脑算法还有非常长的路要走,需要依赖于基础学科的突破。
链接派的主打算法是神经网络,其中的分支深度学习(DeepLearning)如今在图片和视频领域发展非常迅速,应用很广泛。有很多框架可以支持神经网络分析,包括Pytorch,TensorFlow、Caffe和百度Paddle等。这些框架的工作原理都类似:通过迭代分析大量样例数据来使用分层的方式发掘数据中的特点,把结果从一层传递到下一层做下一步分析。每一层能从数据中解析出更复杂、抽象的特点。
神经网络的问题之一是需要大量标注好的数据来训练算法,有一些场景下这是不可能做到的。其中用到的反向传播技术,被诟病的是找到的是“好”的方案而不是“最佳”方案,因为它找到的是局部而非全局最优解。
3.进化派
一定程度上说进化是一个比人脑更大的学习算法,因为:
它创造了人脑
它创造了地球上其他生物形态
所以值得探究它到底是如何工作的,然后在计算机上实现它。
进化派希望在计算机领域模拟出进化过程:让自然选择,适者生存,犹如达尔文观察到的那样。其过程是一次(一代)运行数以百万个不同的解决方案/算法,其中结果最好的方法保留到下一代。下一代里通过把上一代算法结合到一起来创建一个新的算法。这种每一代都有变化的方式会让我们一步步逼近解决问题的理想算法。
进化派的主打算法是基因编程(GeneticProgramming)。这种算法的缺点是一个算法产生后,只能等待下一代时才能产出一个更好的算法。
4.贝叶斯派
贝叶斯派来源于概率统计领域,想系统地减少不确定性。
其实人类学习到的知识并不是一成不变的,它是不确定的在动态变化的。当我们从数据中推理出一些东西,是无法完全确定就是这样的。所以学习的方法变成通过使用概率来量化不确定性,当你看到了更多的证据,那不同假设的概率就在随之调整,证据越多的概率越高。其中方法之一就是大名鼎鼎的贝叶斯理论。
好处是不需要大量的数据集,而且研究院也更容易理解和解释训练结果和机器决策过程,甚至可以调整结果。一些使用贝叶斯技术的试验在识别物体方面也有好的结果。
5.类比派
这个学派主要源于心理学,使用的是最简单,最直观的方式:通过类比来推理。心理学中有大量证据表明人类就是这样做的:当你面对一个新问题,你会从已有的经验中找到与之类似的情况,然后把解决方法拿过来解决现有问题。
主打算法是内核机器(KernelMachines),比如支持向量机(SupportVectorMachine)是其中算法之一,它是一种Kernel技巧,能把本来非线性的分隔问题映射到线性平面。
关于人工智能学科机构的内容到此结束,希望对大家有所帮助。