很多朋友对于人工智能 介绍视频和人工智能介绍视频不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!
本文目录
自动化和人工智能的区别
自动化属于基础学科,人工智能技术是其中一个分支。
自动化通俗的白话定义是最高级的机械化和电气化,即是机器、设备和仪器能全部自动地按规定的要求和既定的程序进行生产,人只需要确定控制的要求和程序,不用直接操作。
人工智能即是对人的意识、思维的信息过程的模拟,即按照人的思维进行自动操作。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
拓展资料:
自动化属于一门基础性学科,
从学科方向上而言,包含三大类,分别是:
1、工业过程控制方向:以自动控制、计算机技术为支撑,针对实际工业生产过程实现自动控制,由信号检测与变换、过程控制、计算机控制系统、智能控制和现场总路线控制技术等组成方向主干课。
2.、电气工程方向:使学生能够从事电力系统自动化、工厂企业、楼宇系统的供电和电气控制、监控等领域的设计开发、维护和管理工作。由电气控制技术、运动控制、PLC应用技术、供电技术、电力系统继电保护等组成方向主干课。
3.、嵌入系统方向:注重对嵌入式系统设计与软件设计能力的培养,理论结合实践,通过课堂教学、实验等多种形式的学习,培养嵌入式系统方向的专业人才;由嵌入式系统设计、嵌入式实时操作系统、DSP技术、先进显示技术、控制电机等组成方向主干课。
从自动基础学科涉及的专业影响而言:
从深度来看--以工业生产为例,小到一个普通的设备电机,大到企业的整个加工、制造系统乃至企业的整个生产过程都属于自动化。
从广度来看--涉及第二产业工业自动化、第一产业农业自动化、第三产业服务自动化(如办公自动化、楼宇自动化、商务自动化、交通自动化等等),涉及的系统可有人造系统(如机器系统、交通系统、电力系统、军事系统)和自然系统(如生命系统、生态系统),涉及的过程有生产过程、管理过程、决策过程等等。
“人工智能”一词最初是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。
人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。
也有一种说法,将人工智能归结到计算机技术,认为人工智能是计算机技术的一种衍生方向。
人工智能到底是什么?
▲人工智能artificialintelligence英文缩写AI,早在六十年的1956年夏天人工智能学科就诞生了。现如今科技发展,使人工智能应用与人类生活的方方面面,随着科技水平提高会不断完善壮大。简单理解人工智能就是人不愿意做的事情由智能机器人代替。
人工智能的发展是以软硬件为基础,经历了漫长的发展历程。上世纪三四十年代,以维纳、弗雷治、罗素等为代表发展起来的。
人工智能的时代到来宣布了以前的“勤劳致富”的时代结束,能够操控人工智能才是赚钱的核心。勤劳只能够养家不能够致富,将来不再是勤劳致富,而是智能致富。你能不能操控智能机器,能不能玩转电脑才是赚钱的基础。
人工智能主要是学什么的?
要了解人工智能学什么内容,需要首先了解人工智能是什么:
1、人工智能是计算机科学的一个分支,它企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。
2、人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。人工智能是包括十分广泛的科学,它由不同的领域组成,如机器学习,计算机视觉等等,总的说来,人工智能研究的一个主要目标是使机器能够胜任一些通常需要人类智能才能完成的复杂工作。
那么,人工智能学什么内容呢?
目前人工智能专业的学习内容主要包括:机器学习、人工智能导论(搜索法等)、图像识别、生物演化论、自然语言处理、语义网、博弈论等。
需要的基础课程主要有,信号处理,线性代数,微积分,还有编程(有数据结构基础)。
从专业的角度来说,机器学习、图像识别、自然语言处理,这其中任何一个都是一个大的方向,只要精通其中一个方向,就已经很厉害了。所以不要看内容很多,有些你只是需要掌握,你需要选择的是一个方向深入研究。其实严格来说,人工智能不算难学,但是也不是轻轻松松就能学会的,需要有一定的数学相关的基础,同时还有一段时间的积淀。
人工智能到底有多厉害?
1.什么是人工智能
人工智能(ArtificialIntelligence):它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。1956年由约翰.麦卡锡首次提出,当时的定义为“制造智能机器的科学与工程”。人工智能目的就是让机器能够像人一样思考,让机器拥有智能。时至今日,人工智能的内涵已经大大扩展,是一门交叉学科。
2.人工智能的层次结构
基础设施层:回顾人工智能发展史,每次基础设施的发展都显著地推动了算法层和技术层的演进。从20世纪70年代的计算机的兴起,80年代计算机的普及,90年代计算机运算速度和存储量的增加,互联网兴起带来的电子化,均产生了较大的推动作用。到21世纪,大规模集群的出现,大数据的积累,GPU与异构/低功耗芯片兴起带来的运算力的提升,促成了深度学习的诞生,点燃了人工智能的爆**潮,其中海量的训练数据是人工智能发展的重要燃料。
算法层:机器学习是指利用算法使计算机能够像人一样从数据中挖掘出信息,而深度学习作为机器学习的一个子集,相比于其他学习方法,使用了更多的参数、模型也更复杂,从而使得模型对数据的理解更加深入也更加智能。
计算机视觉:计算机视觉的历史可以追溯到1966年,人工智能学家Minsky在给学生布置的作业中,要求学生通过编写一个程序让计算机告诉我们它通过摄像头看到了什么,这也被认为是计算机视觉最早的任务描述。计算机视觉借鉴了人类看东西的方法,即“三维重构”与“先验知识库”。计算机视觉除了在比较成熟的安防领域外,也应用于金融领域的人脸识别身份验证、电商领域的商品拍照搜索、医疗领域的智能影像诊断、机器人/无人车上作为视觉输入系统等。
语音处理:让机器学会“听”和“说”,实现与人类的无障碍交流一直是人工智能、人机交互领域的一大梦想。1920年生产的“RadioRex”玩具狗可能是世界上最早的语音识别器,第一个真正基于语音识别系统出现在1952年,AT&T贝尔实验室开发的Audrey的语音识别系统,能够识别10个英文数字,正确率高达98%。比如AppleSiri,Echo等。
自然语言处理:人类的日常社会活动中,语言交流是不同个体间信息交换和沟通的重要途径。对机器而言,能否自然的与人类进行交流、理解人类表达的意思并作出合适的回应,被认为是衡量其智能程度的一个重要参照。
规划决策系统:人工智能规划决策系统的发展,一度是以棋类游戏为载体的。比如,AlphaGo战胜李世石,Master对顶级选手取得60连胜,机器人,无人车。
3.人工智能应用场景
3.1.语音处理
?语音处理主要是自动且准确的转录人类的语音。一个完整的语音处理系统,包括前端的信号处理、中间的语音语义识别和对话管理以及后期的语音合成。
–前端处理:说话人声检测,回声消除,唤醒词识别,麦克风阵列处理,语音增强等。
–语音识别:特征提取,模型自适应,声学模型,语言模型,动态解码等。
–语义识别和对话管理:更多属于自然语言处理的范畴。
–语音合成:文本分析、语言学分析、音长估算、发音参数估计等。
?应用:包括医疗听写、语音书写、电脑系统声控、电话客服等。
?未来:真正做到像正常人类一样,与他人流畅沟通,自由交流,还有待时日。
3.2.计算机视觉
?计算机视觉指计算机从图像中识别出物体、场景和活动的能力,包含图像处理、识别检测、分析理解等技术。
–图像处理:去噪声、去模糊、超分辨率处理、滤镜处理等。
–图像识别:过程包括图像预处理、图像分割、特征提取、判断匹配,可以用来处理分类、定位、检测、分割问题等。
–图像理解:本质是图像与文本间的交互,可用来执行基于文本的图像搜索、图像描述生成、图像问答等。
?应用:
–医疗成像分析被用来提高疾病的预测、诊断和治疗。
–在安防及监控领域被用来指认嫌疑人。
–在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多信息。
?未来:计算机视觉有望进入自主理解、分析决策的高级阶段,真正赋予机器“看”的能力,在无人车、智能家居等场景发挥更大的价值。
3.3.自然语言处理
?自然语言处理的几个核心环节:知识的获取与表达、自然语言理解、自然语言生成等,也相应出现了知识图谱、对话管理、机器翻译等研究方向。
–知识图谱:基于语义层面对知识进行组织后得到的结构化结果。
–对话管理:包含闲聊、问答、任务驱动型对话。
–机器翻译:由传统的PBMT方法到Google的GNMT,流畅度与正确率大幅提升。
?应用:搜索引擎、对话机器人、机器翻译、甚至高考机器人、办公智能秘书。
4.AI、机器学习、深度学习的关系
4.1.人工智能四要素
1)数据
如今这个时代,无时无刻不在产生大数据。移动设备、廉价的照相机、无处不在的传感器等等积累的数据。这些数据形式多样化,大部分都是非结构化数据。如果需要为人工智能算法所用,就需要进行大量的预处理过程。
2)算法
主流的算法主要分为传统的机器学习算法和神经网络算法。神经网络算法快速发展,近年来因为深度学习的发展到了高潮。
3)算力
人工智能的发展对算力提出了更高的要求。以下是各种芯片的计算能力对比。其中GPU领先其他芯片在人工智能领域中用的最广泛。GPU和CPU都擅长浮点计算,一般来说,GPU做浮点计算的能力是CPU的10倍左右。
另外深度学习加速框架通过在GPU之上进行优化,再次提升了GPU的计算性能,有利于加速神经网络的计算。如:cuDNN具有可定制的数据布局,支持四维张量的灵活维度排序,跨步和子区域,用作所有例程的输入和输出。在卷积神经网络的卷积运算中实现了矩阵运算,同时减少了内存,大大提升了神经网络的性能。
4)场景
人工智能经典的应用场景包括:
用户画像分析基于信用评分的风险控制欺诈检测智能投顾智能审核智能客服机器人机器翻译人脸识别4.2.三者关系简述
人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法及应用系统的一门新的技术科学。
机器学习:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。是人工智能的核心研究领域之一,任何一个没有学习能力的系统都很难被认为是一个真正的智能系统。
深度学习:源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。
好了,关于人工智能 介绍视频和人工智能介绍视频的问题到这里结束啦,希望可以解决您的问题哈!