工业机械人工智能(机械 人工智能)

Bitget下载

注册下载Bitget下载,邀请好友,即有机会赢取 3,000 USDT

APP下载   官网注册

大家好,今天来为大家分享工业机械人工智能的一些知识点,和机械 人工智能的问题解析,大家要是都明白,那么可以忽略,如果不太清楚的话可以看看本篇文章,相信很大概率可以解决您的问题,接下来我们就一起来看看吧!

本文目录

  1. 传统机械与人工智能有什么区别
  2. 人工智能机械哪些专业好
  3. 机械专业转人工智能容易吗
  4. 现阶段,制造业在人工智能方面有哪些运用?请举例说明?

传统机械与人工智能有什么区别

机械工程和人工智能的交叉点在智能制造这种交叉点一般是以人工智能专业为主、机械相关专业为辅。智能制造、或者说AI+制造业普遍存在一个痛点,就是行业壁垒高,制造业不懂,AI业进不来。

人工智能机械哪些专业好

一、机器人工程专业

机器人工程近几年新兴的专业,是一门在真实世界环境下将感知、决策计算和执行驱动组合在一起的应用交叉学科和技术。2016年在大学里首次设立是教育部重点扶持的专业之一,如今也已经成为了热门专业,该专业主要是为了培养具备工业机器人技术及创新能力的专业人才。

二、智能科学与技术专业

智能科学与技术专业在硬件基础上,给机器人赋予一个类似人的大脑,神经传导及信息处理系统,简单说来就是学习如何控制机器人,学科的设立也是为了适应社会对从事智能化产品研发人员迫切需求的现状。

三、计算机科学与技术专业

计算机科学与技术专业专业主要是为了培养具有良好的科学素养,系统的、全面的掌握包括计算机硬件、软件与应用的基本理论和基本知识的人才。与人工智能学习也有交叉部分,毕业后就业相对容易。

四、模式识别与智能系统专业

模式识别是一个新兴的交叉学科,是自动控制、模式识别、人工智能、模糊逻辑、仿生学和计算机科学与技术等多个学科融合的产物。该专业是一门理论与实际紧密结合,具有广泛应用价值的学科,对于人工智能是起到至关重要的作用的。

五、自动化专业该专业

能够使机器、设备和仪器能全部按照规定的要求和既定的程序进行生产的一门专业。自动化专业对于人工智能是属于基础学科,涉及面是比较广。无论是哪一个专业,本科对于人工智能的接触都是比较表面,如果真的想要从事与人工智能相关专业的话还是必须要读研的,而且一定要重视本科中数学的学习,另外人工智能常常对嵌入式要求比较高,因此要注意以下这方面的课程。

人工智能是一门新兴的高尖端学科,属于社会科学与自然科学的交叉学科,涉及了数学、心理学、神经生理学、信息论、计算机科学、哲学和认知科学、不定性论以及控制论。研究的范畴包含自然语言的处理、机器算法的学习、神经网络、模式识别、智能搜索。应用的领域包含机器翻译、语言和图像理解、自动程序设计、专家系统等。选择学习人工智能相关的专业,未来的发展前景比较好。

机械专业转人工智能容易吗

不会容易。

反正不会容易,本身机器人技能属于屠龙技能。这么高级的大招,肯定不轻松。不过机械专业本身就是靠近机器人行业。

对于机械专业的本科生来说,如果想往人工智能方向发展,有以下几个选择:

第一:立足本专业结合人工智能技术。目前机械专业的研究生教育阶段也有不少方向是结合人工智能技术的,比如数控方向、工业机器人方向、智能装备方向等等,这些方向与人工智能有紧密的联系,是完全可以选择的。当然,不同的高校会结合自身的教育资源来设置不同的方向,在报考之前需要做一个详细的了解。另外,立足本专业考研也会提高考研的成功率。

第二:选择自动化相关专业。自动化相关专业的研究生教育与人工智能的联系是比较紧密的,相比于普通的机械专业来说,选择自动化专业的研究生会接触更多智能化方向。在物联网、大数据和云计算的推动下,未来自动化相关领域的智能化程度会越来越高。

第三:选择计算机相关方向。人工智能虽然是比较典型的交叉学科,涉及到数学、控制学、计算机、语言学、经济学等等,但是人工智能的研究生教育主要集中在计算机相关专业,所以选择计算机专业的相关研究方向也是比较常见的选择。目前人工智能的研究方向集中在机器学习、计算机视觉、自然语言处理、知识表示、自动推理和机器人学六大领域,对于机械专业的本科生来说,选择机器人学是不错的选择。

现阶段,制造业在人工智能方面有哪些运用?请举例说明?

人工智能在制造生产有哪些应用的这个话题足够大,这里我假定提问者想要讨论的边界是如何通过人工智能这项技术代替人脑甚至超越人脑的功能,来实现制造业生产效率的提升。

为什么制造业需要人工智能?

从两个维度来解读,首先是技术上:计算机处理速度大幅提升、存储成本下降、以及云计算、物联网等技术的发展,让人工智能的应用成本大幅降低。其次是需求上:随着消费者个性化和产品品质升级的需求发展,大大增加了制造业的复杂性,包括生产的组织形式、质量检测环节、仓储物流等环节。随着系统越来越复杂,人的学习曲线就会越缓慢,人应对复杂系统的能力就会成为制约技术进步和应用的瓶颈。在传统工业界大都以人的决策和反馈为核心,这就会导致系统中有很大一部分的价值并没有被释放出来。而人工智能为工业带来的变革,就是摆脱人类认知和知识边界的限制,为决策支持和协同优化提供可量化依据。

1、人工智能在生产产线的应用

1.1产线设备维护

人工智能在工厂运维的应用:

比如一条生产线突然发出故障报警,机器能够自己进行诊断,找到哪里产生了问题,原因是什么,同时还能够根据历史维护的记录或者维护标准,告诉我们如何解决故障,甚至让机器自己解决问题、自我恢复。例如,在一个电网中,要能够可靠地定位在电网的哪个地方出现了问题,用常规方法大概只能做到80%。西门子利用了深度学习技术对历史故障事件学习,通过已经分布在电网中的继电器,来更好地判断电网出了什么问题,出在哪个地方等等。学习算法已经嵌入到我们标准断路器的产品中。

人工智能在预测性维护的应用:

如果工业生产线或设备如果突然出现问题,那造成的损失是非常巨大的。利用大数据建模和神经网络等算法,可以让机器在出现问题之前就感知到或者分析出可能出现的问题。比如,工厂中的数控机床在运行一段时间后刀具就需要更换,西门子的数控机床预防性维护解决方案,通过分析历史的运营数据,机器可以提前知道刀具会损坏的时间,从而提前准备好更换的配件,并安排在最近的一次维护时更换刀具。

1.2产线设备参数优化

生产产线工位少则几十个,多则数百个,涉及的产线设备、生产物料、工人都非常多。通过基于生产线的大量数据,基于大数据分析和智能算法可以优化生产工艺、提升产品品质。在中策橡胶,基于阿里云ET工业大脑,将生产端的各类数据进行深度运算和分析,形成了资源最优利用的方案组合,提升了5%混炼胶合格率。在天合光能,阿里云数据科学家通过研究光伏电池的业务流程和制作工艺,构建出数据分析模型,对工艺参数进行调整,最终在丝网印刷环节捕获到了关键因子,优化后A品率提升了7%。

2、人工智能在质量检测的应用

现在有很多工厂传统上都是用人工在做质量检测的工作,在生产流水线上的质检员,他们需要每天花10个小时以上的时间去判断质量。很多工厂这个工作岗位两三个月就要轮一次岗,因为肉眼确实受不了。为什么之前没用技术的手段帮助解决质检的问题呢?主要原因是传统视觉设备误判率比较高。大概是有百分之二十,甚至三十的误判率。人工智能最重要的一个能力,它具备学习能力。比如说,同样一个划痕,它会和传统系统一样,第一次都犯错误。但是人工智能第二次、第三次,它不会犯一样的错误,它具备一个学习能力。同样的问题或者类似的问题,下次它会做出非常精准的判断。而传统的系统除非修改程序,同样的问题,下次它一样会犯错误。

正如百度前人工智能首席专家吴恩达和富士康合作的智能检测,通过利用深度学习,神经网络,就可以让电脑快速学习做自动检测的工作。现在人工智能介入了以后,工厂的这种误判率会在上线时达到3%-4%的水平,并且会逐步减少到最低。

3、人工智能在仓储物流的应用

仓储物流的包括环节很多,从入库分拣、库位管理、上下架、出库分拣到物料运输,中间涉及分拣机器人、上下料机器人、立库、AGV小车、叉车等。通过计算机视觉用于分拣机器人的感知和地图定位,利用机器学习和深度学习,实现分检机器人的路径规划和避障。通过数学规划等运筹优化算法和遗传算法,实现仓库上下架策略管理。通过多智能体算法蚁群算法用于多个分拣机器人的协调行动。基于人工智能技术实现货架、商品、机器人的整体协调,能够更快速的实现产品出入库和高效的仓库货架规划。在工厂仓储中,各种类型的全自动流水线、自动分拨、仓储和配送机器人已经开始慢慢应用,基于人工智能技术可以让每一个物料都有最优路径,最短时间送达。

4、人工智能在整体运维的应用

运维数据量庞大,基于深度学习技术在庞大的数据量中发掘价值。西门子在西班牙的高铁的运维中有一个整体的应用。西班牙的高铁公司有一条线从马德里到巴塞罗那的,而从马德里到巴塞罗那的航班很多,就像京沪线一样,这个行业面临和航空公司竞争的挑战。后来它公布一个政策,在这条线上如果延误超过15分钟,全额退款。这个高铁线到现在是非常成功的,背后是西门子提供的服务和担保,担保99%的准点率。西门子有一个工业4.0工厂在德国安贝格,在成都也有一个,是它的双胞胎。在安贝格,所有能源的分析、消耗都是通过神经网络来完成。基于人工智能技术来实现工厂整体能耗的降低。同时,西门子在全球30个钢铁厂也用了一些在线神经网络学习以及分析应用,来控制钢铁厂的能耗。

关于工业机械人工智能,机械 人工智能的介绍到此结束,希望对大家有所帮助。

工业机械人工智能(机械 人工智能)文档下载: PDF DOC TXT