浮点人工智能(点内人工智能)

Bitget下载

注册下载Bitget下载,邀请好友,即有机会赢取 3,000 USDT

APP下载   官网注册

老铁们,大家好,相信还有很多朋友对于浮点人工智能和点内人工智能的相关问题不太懂,没关系,今天就由我来为大家分享分享浮点人工智能以及点内人工智能的问题,文章篇幅可能偏长,希望可以帮助到大家,下面一起来看看吧!

本文目录

  1. 人工系统的知识包含的4个要素
  2. 人工智能的本质是什么,会不会威胁到人类的生存与发展?
  3. 你怎么看待人工智能的未来?
  4. 矿卡可以用来进行AI人工智能训练吗?

人工系统的知识包含的4个要素

人工智能系统的四要素为:

1、大数据;人工智能的智能都蕴含在大数据中。

2、算力;为人工智能提供了基本的计算能力的支撑。

3、算法;实现人工智能的根本途径,是挖掘数据智能的有效方法。

4、场景;对大量数据进行预处理。

人工智能的本质是什么,会不会威胁到人类的生存与发展?

1.什么是人工智能

人工智能(ArtificialIntelligence):它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。1956年由约翰.麦卡锡首次提出,当时的定义为“制造智能机器的科学与工程”。人工智能目的就是让机器能够像人一样思考,让机器拥有智能。时至今日,人工智能的内涵已经大大扩展,是一门交叉学科。

2.人工智能的层次结构

基础设施层:回顾人工智能发展史,每次基础设施的发展都显著地推动了算法层和技术层的演进。从20世纪70年代的计算机的兴起,80年代计算机的普及,90年代计算机运算速度和存储量的增加,互联网兴起带来的电子化,均产生了较大的推动作用。到21世纪,大规模集群的出现,大数据的积累,GPU与异构/低功耗芯片兴起带来的运算力的提升,促成了深度学习的诞生,点燃了人工智能的爆**潮,其中海量的训练数据是人工智能发展的重要燃料。

算法层:机器学习是指利用算法使计算机能够像人一样从数据中挖掘出信息,而深度学习作为机器学习的一个子集,相比于其他学习方法,使用了更多的参数、模型也更复杂,从而使得模型对数据的理解更加深入也更加智能。

计算机视觉:计算机视觉的历史可以追溯到1966年,人工智能学家Minsky在给学生布置的作业中,要求学生通过编写一个程序让计算机告诉我们它通过摄像头看到了什么,这也被认为是计算机视觉最早的任务描述。计算机视觉借鉴了人类看东西的方法,即“三维重构”与“先验知识库”。计算机视觉除了在比较成熟的安防领域外,也应用于金融领域的人脸识别身份验证、电商领域的商品拍照搜索、医疗领域的智能影像诊断、机器人/无人车上作为视觉输入系统等。

语音处理:让机器学会“听”和“说”,实现与人类的无障碍交流一直是人工智能、人机交互领域的一大梦想。1920年生产的“RadioRex”玩具狗可能是世界上最早的语音识别器,第一个真正基于语音识别系统出现在1952年,AT&T贝尔实验室开发的Audrey的语音识别系统,能够识别10个英文数字,正确率高达98%。比如AppleSiri,Echo等。

自然语言处理:人类的日常社会活动中,语言交流是不同个体间信息交换和沟通的重要途径。对机器而言,能否自然的与人类进行交流、理解人类表达的意思并作出合适的回应,被认为是衡量其智能程度的一个重要参照。

规划决策系统:人工智能规划决策系统的发展,一度是以棋类游戏为载体的。比如,AlphaGo战胜李世石,Master对顶级选手取得60连胜,机器人,无人车。

3.人工智能应用场景

3.1.语音处理

?语音处理主要是自动且准确的转录人类的语音。一个完整的语音处理系统,包括前端的信号处理、中间的语音语义识别和对话管理以及后期的语音合成。

–前端处理:说话人声检测,回声消除,唤醒词识别,麦克风阵列处理,语音增强等。

–语音识别:特征提取,模型自适应,声学模型,语言模型,动态解码等。

–语义识别和对话管理:更多属于自然语言处理的范畴。

–语音合成:文本分析、语言学分析、音长估算、发音参数估计等。

?应用:包括医疗听写、语音书写、电脑系统声控、电话客服等。

?未来:真正做到像正常人类一样,与他人流畅沟通,自由交流,还有待时日。

3.2.计算机视觉

?计算机视觉指计算机从图像中识别出物体、场景和活动的能力,包含图像处理、识别检测、分析理解等技术。

–图像处理:去噪声、去模糊、超分辨率处理、滤镜处理等。

–图像识别:过程包括图像预处理、图像分割、特征提取、判断匹配,可以用来处理分类、定位、检测、分割问题等。

–图像理解:本质是图像与文本间的交互,可用来执行基于文本的图像搜索、图像描述生成、图像问答等。

?应用:

–医疗成像分析被用来提高疾病的预测、诊断和治疗。

–在安防及监控领域被用来指认嫌疑人。

–在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多信息。

?未来:计算机视觉有望进入自主理解、分析决策的高级阶段,真正赋予机器“看”的能力,在无人车、智能家居等场景发挥更大的价值。

3.3.自然语言处理

?自然语言处理的几个核心环节:知识的获取与表达、自然语言理解、自然语言生成等,也相应出现了知识图谱、对话管理、机器翻译等研究方向。

–知识图谱:基于语义层面对知识进行组织后得到的结构化结果。

–对话管理:包含闲聊、问答、任务驱动型对话。

–机器翻译:由传统的PBMT方法到Google的GNMT,流畅度与正确率大幅提升。

?应用:搜索引擎、对话机器人、机器翻译、甚至高考机器人、办公智能秘书。

4.AI、机器学习、深度学习的关系

4.1.人工智能四要素

1)数据

如今这个时代,无时无刻不在产生大数据。移动设备、廉价的照相机、无处不在的传感器等等积累的数据。这些数据形式多样化,大部分都是非结构化数据。如果需要为人工智能算法所用,就需要进行大量的预处理过程。

2)算法

主流的算法主要分为传统的机器学习算法和神经网络算法。神经网络算法快速发展,近年来因为深度学习的发展到了高潮。

3)算力

人工智能的发展对算力提出了更高的要求。以下是各种芯片的计算能力对比。其中GPU领先其他芯片在人工智能领域中用的最广泛。GPU和CPU都擅长浮点计算,一般来说,GPU做浮点计算的能力是CPU的10倍左右。

另外深度学习加速框架通过在GPU之上进行优化,再次提升了GPU的计算性能,有利于加速神经网络的计算。如:cuDNN具有可定制的数据布局,支持四维张量的灵活维度排序,跨步和子区域,用作所有例程的输入和输出。在卷积神经网络的卷积运算中实现了矩阵运算,同时减少了内存,大大提升了神经网络的性能。

4)场景

人工智能经典的应用场景包括:

用户画像分析基于信用评分的风险控制欺诈检测智能投顾智能审核智能客服机器人机器翻译人脸识别

4.2.三者关系简述

人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法及应用系统的一门新的技术科学。

机器学习:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。是人工智能的核心研究领域之一,任何一个没有学习能力的系统都很难被认为是一个真正的智能系统。

深度学习:源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

你怎么看待人工智能的未来?

刚刚过去的首届世界智能大会上,科技部部长万钢表示,最近新一代人工智能发展规划已编制完成,规划对直到2030年的中国人工智能产业进行系统的部署,同时包括与此相关的人工智能重大科技项目。

与此同时,随着技术的进步与需求的拓展,人工智能也掀起了一股投资潮和创业热。资本、技术、政策三重利好的情况下,人工智能的应用场景也在打开。市场调研显示,截至2030年,人工智能将为全球GDP带来14%的增长,也就是15.7万亿美元。其中,6.6万亿美元来自生产力的提高,9.1万亿美元来自相关消费/商业市场。

三张图看懂人工智能有多热

就像吴恩达说的:人工智能(AI)之于未来,正如电力之于第二次工业革命。

*人工智能搜索热度示意(对比大数据)

我们可以看到,自2012年以来,由谷歌、Facebook(FB)、苹果、英特尔等科技巨头发起的AI创企收购项目达200多个,近2017年第一季度就有30多起并购。其中,谷歌是最为活跃的收购方(11起),苹果次之(7起)。除了科技公司,福特也在今年Q1以10亿美元买下网络安全公司Sophos。

*2012年至今人工智能并购案示意

除了收购,专利研发层面,巨头们也是步步紧咬,有趣的案例包括谷歌的照片视角重构和FB基于深度学习的标签预测模型。

*微软、谷歌、亚马逊、FB、苹果专利数示意

人工智能爆发的背后逻辑

要解释一个技术路线发展的逻辑,我们往往从宏观趋势和当前进展两个角度出发。

首先来看宏观趋势,人工智能背后代表的先进生产力能够带来巨大的经济效益,因此一直吸引着研发投入。

自1956年达特茅斯会议诞生“人工智能”一词以来,技术发展已经取得了质的突破:大数据和数据处理技术的逐步成熟,包括深度学习算法的提出,以及适合海量训练数据的GPU的引入,开启了人工智能的入口。

算法和芯片是AI建设的基础层,除了当前AI市场主流芯片,即英伟达的GPU之外,英特尔(收购NervanaSystems;FPGA)和谷歌(研发Tensor)也在推广自己产品。除了目前主流的两种改善通用芯片用于半定制的深度学习算法之外,业内也在积极研发面向人工智能应用的新的芯片,包括谷歌的TPU、我国中科院计算所的寒武纪,这类的针对特定算法以及特定框架的全定制AI芯片,以及更近一步的,IBM的TrueNorth这类的类脑芯片(BPU)。

*人工智能芯片一览(援引招商证券)

算法,尤其是深度学习算法领域,则不是巨头垄断,而是掀起了一波包括计算机视觉、语音交互、机器人/自动化、医疗、安全、消费、商务等领域的创业潮。巨头们往往选择更为基础的算法框架入手,进行开源,以构建自家AI生态,如谷歌的TensorFlow和微软的CognitiveToolkit。

*深度学习创业潮

除了基础层建设,AI的前沿进展还包括马斯克的脑机接口项目、基于ARM的深度学习芯片以及英伟达面向医疗的应用、聊天程序/聊天机器人发展出了自己的语言、英特尔的自动驾驶技术研发等。

艾瑞咨询分析师张凤表示:“目前我国71%的人工相关企业都在做技术落地应用,在算法技术方面,55%的企业在做计算机视觉,13%在做自然语言处理,只有9%的企业真正研究机器学习。能够很快把技术应用落地是我国的优势,但是对于基层的技术研究,我国的企业实力目前还无法和国外匹敌,这是劣势。”

再来看当前进展:现在的AI能做什么?引用FB研发主管YannLeCun的话,我们现在看到的AI,不到它真正的能力的5%。

矿卡可以用来进行AI人工智能训练吗?

什么是矿卡呢?矿卡是用来寻找比特币的经过改造的显卡,这种经过改造的显卡和一般电脑用到的显卡是不一样的,如果要用在一般电脑上要稍微改造一下,因为矿卡把图像输出通道给关闭了,通过改造把通道打开也是可以使用的。

另外人工智能的训练更多依赖的是cpu的性能,因为人工智能的训练本质上是给算法输入大量的数据,比如一个人脸识别的算法,他需要海量的人脸数据库来学习,人脸数据越多,训练出来的识别准确度越高,所以这非常考验CPU的性能和浮点计算能力,和显卡的关系不是很大。

还有用来做人工智能训练一般是服务器级别的,一般普通电脑运行起来很吃力,需要花费的时间很长,对电脑的损耗也比较大。

综合来说用作矿卡的显卡经过改造是可以在用在进行人工智能训练的服务器级别的电脑上的,谢谢。

好了,文章到这里就结束啦,如果本次分享的浮点人工智能和点内人工智能问题对您有所帮助,还望关注下本站哦!

浮点人工智能(点内人工智能)文档下载: PDF DOC TXT