一、人工智能的发展时期7个阶段
1、50年代人工智能的兴起和冷落。人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题、求解程序、LISTP表处理语言等。但由于消解法推理能力的有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。
2、60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-Ⅱ语音处理系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议。
3、80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
4、80年代末,神经网络飞速发展。1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
5、90年代,人工智能出现新的研究高潮。由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,使人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深人到社会生活的各个领域。
二、人工智能教育领域包含范围
1、人工智能教育领域包括机器学习、自然语言处理、计算机视觉等技术,以及教育机器人、智能教学系统等应用。
2、随着人工智能技术的不断发展,该领域的范围将越来越广泛。
三、人工智能领域有哪些技术
人工智能领域中包含了很多技术,主要包含以下几个方面:
1.机器学习:机器学习是一种基于数据和算法的学习方法,通过分析和识别大量的数据,来让计算机得以自我学习,自我优化,最终提高预测和决策的准确性。
2.深度学习:深度学习是机器学习的一种,它通过神经网络模型来对数据进行处理和分类,由于神经网络的深度较大,所以其可以处理更为复杂的数据形式,比如图像、语音等。
3.自然语言处理:自然语言处理技术是用计算机实现对自然语言文本的分析和理解,包括自然语言的声音、语音、文本和表达方式等多种语言形态。
4.机器人技术:机器人技术的主要任务是使机器人具有人类的智能和感知能力,能够完成人类难以完成的任务,比如在危险环境中进行救援、生产线上的自动化等。
5.计算机视觉:计算机视觉是通过计算机算法实现对图像、视频、三维物体等数字图像的分析和理解,包括图像处理、模式识别、特征提取等。
以上技术是人工智能领域中比较常见的技术,在未来的发展中,这些技术将会不断得到改进和升级,同时也会涌现出更多新的技术。
四、人工智能诞生于哪一年人工智能研究最广泛的两个领域
1、人工智能这一概念诞生于1956年在美国达特茅斯学院举行的“人工智能夏季研讨会”!
2、人工智能运用的最广泛的两个领域:专家系统和机器学习;
3、专家系统是早期人工智能的一个重要分支,它可以看作是一类具有专门知识和经验的计算机智能程序系统,一般采用人工智能中的知识表示和知识推理技术来模拟通常由领域专家才能解决的复杂问题。一般来说,专家系统=知识库+推理机,因此专家系统也被称为基于知识的系统。
五、人工智能两个分支是什么
计算机视觉(CV)是指机器感知环境的能力。这一技术类别中的经典任务有图像形成、图像处理、图像提取和图像的三维推理。物体检测和人脸识别是其比较成功的研究领域。
语音识别是指识别语音(说出的语言)并将其转换成对应文本的技术。相反的任务(文本转语音/TTS)也是这一领域内一个类似的研究主题。
这里的文本挖掘主要是指文本分类,该技术可用于理解、组织和分类结构化或非结构化文本文档。其涵盖的主要任务有句法分析、情绪分析和垃圾信息检测。
机器翻译(MT)是利用机器的力量自动将一种自然语言(源语言)的文本翻译成另一种语言(目标语言)。
机器人学(Robotics)研究的是机器人的设计、制造、运作和应用,以及控制它们的计算机系统、传感反馈和信息处理。
机器人可以分成两大类:固定机器人和移动机器人。固定机器人通常被用于工业生产(比如用于装配线)。常见的移动机器人应用有货运机器人、空中机器人和自动载具。机器人需要不同部件和系统的协作才能实现最优的作业。其中在硬件上包含传感器、反应器和控制器;另外还有能够实现感知能力的软件,比如定位、地图测绘和目标识别。