一、人工智能的所学方向和基本领域是什么
用高科技技术取代人工领域的分工和作业
二、人工智能的发展时期7个阶段
1、50年代人工智能的兴起和冷落。人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题、求解程序、LISTP表处理语言等。但由于消解法推理能力的有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。
2、60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-Ⅱ语音处理系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议。
3、80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
4、80年代末,神经网络飞速发展。1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
5、90年代,人工智能出现新的研究高潮。由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,使人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深人到社会生活的各个领域。
三、人工智能服务有哪些
1、无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等
2、人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。
3、人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。
4、机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。
5、生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。
6、智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。
7、智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。
8、智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作
9、个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。
10、医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像
11、图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。
四、人工智能选题背景和意义
人工智能(ArtificialIntelligence,简称AI)是计算机科学的一个重要分支,旨在研究、开发和应用能够模拟、扩展和辅助人类智能的理论、方法、技术及应用系统。近年来,人工智能技术取得了显著的进展,对各行各业产生了深远的影响。以下是人工智能选题的背景和意义:
1.技术进步:随着计算能力的提升、大数据的普及以及算法的创新,人工智能技术不断发展,为各种应用场景提供了强大的支持。
2.社会需求:随着经济的发展和人类对生活品质的追求,各行各业对人工智能技术的需求日益增长,推动了人工智能领域的研究和应用。
3.政策支持:许多国家和地区纷纷将人工智能列为国家战略重点,出台了一系列支持政策,为人工智能的发展提供了有力的保障。
1.促进科技创新:人工智能选题有助于推动计算机科学、数学、神经科学等多个学科的交叉融合,从而催生新的理论、方法和技术。
2.提升产业竞争力:人工智能技术在制造业、金融、医疗、教育等多个领域具有广泛的应用前景,有助于提高生产效率、降低成本、优化服务,从而提升产业竞争力。
3.改善人类生活:人工智能技术可以帮助解决许多社会问题,如医疗诊断、环境保护、交通拥堵等,从而提高人类的生活质量。
4.培养人才:人工智能选题可以激发学生对科学技术的兴趣和热情,培养一批具有创新精神和实践能力的人才,为社会发展提供强大的人力支持。
总之,人工智能选题具有重要的理论意义和实践价值,对于推动科技创新、提升产业竞争力、改善人类生活以及培养人才等方面具有深远的影响。
五、人工智能实训的主要目的
1、通过实践操作,让学生能够更加深入地了解和掌握人工智能领域的相关理论、算法和技术,并在实际应用中获取更多的经验和技能。
2、具体来说,人工智能实训可以帮助学生实现以下几方面的目标:
3、掌握基础理论知识。人工智能实训通常包括机器学习、深度学习、自然语言处理、计算机视觉等方面的基础理论知识的教授和实践操作,这些知识是学习人工智能的基础,掌握它们对于后续的学习和实践都至关重要。
4、学习算法和技术。人工智能实训能够让学生接触到各种常见的人工智能算法和技术,并进行实现和应用。通过实际操作,学生能够更好地理解和运用这些方法,提高自己的算法和程序设计能力。
5、认识应用场景。人工智能实训课程通常会包括一些典型的应用场景,如图像识别、语音识别、推荐系统、数据挖掘等。通过实践操作,学生可以更加深入地了解这些应用场景的特点和解决方案,提高自己的应用能力。
6、培养创新思维。人工智能实训通常会涉及到一些课程设计和项目开发等活动,这些活动需要学生进行大量的思考和实践,在实践中培养出创新思维和解决问题的能力,为未来的学习和职业发展打好基础。
7、总之,人工智能实训的主要目的是为学生提供一个实践学习的机会,让他们通过具体的应用场景和项目实践,掌握人工智能领域的相关理论和技术,并在实践中不断提高自己的能力和水平。