人工智能领域研究包括什么(人工智能领域研究包括什么方面)

Bitget下载

注册下载Bitget下载,邀请好友,即有机会赢取 3,000 USDT

APP下载   官网注册

人工智能的定义和主要研究方法是什么

直入主题,咱们该先给人工智能来个全面的定义,对吧?

但悲催的是这种清晰唯一的定义在人工智能研究圈里是不存在的!(不存在至少是因为理解和定义智能本身就是个正在进行时。)

人工智能的三种定义

我们确实有很多种方式来定义什么是人工智能。第一种,也是最常见的一种,从人工智能研究广受欢迎的成果的角度:大体上来讲,人工智能或者是“创造和研究具备智能行为的机器”(注意:“具备”是怎么解释都行),或者是“创造和研究可以思考的机器”(注意:什么样的“思考”都行)

第二种定义是从人工智能的组成部分或者其想解决的问题的角度,您最常听到的是这样的:

【计算机视觉:如何识别目标?】【语音识别和合成:如何将声音转化为文字或将文字转换为声音】【自然语言处理NLP:如何从语言中提炼有意义的特征?以及如何在生成式语句中赋予有意义的特征?】【知识图谱:如何用一种更实用的方法(例如,分层级的,语义网络)给信息排序】【推理机:如何通过整合碎片信息形成结论?】【规划:如何计划一系列行动,以确保这些行动被执行的同时,能达成特定的目标?】

所以这儿我们忍不住用一个更有文化的-或者说更高大上的-方式去定义人工智能。AstroTeller(现任X,Alphabe’smoonshotfactory的首席执行官)在1998年提出:“人工智能是研究如何使机器做他们在电影中干的事情的科学”

这个定义差不多就是通用人工智能(强AI或者全AI)和超级人工智能的概念,这些所谓智能的例子在科幻小说里非常多。小说里总会说这个通用系统将会达到或者超过人类的能力-也就是说,人工智能将会整合我们刚才列出的全部功能。

现在人工智能评论员们中最流行的活动之一是试图猜测天网(电影终结者里的人工智能防御系统)何时被取代。如果你注意到针对通用人工智能和超级人工智能的各种预测存在着巨大差别,也会由衷地觉得很难定论这些预测是高估还是低估人工智能,而且这种水平的机器智能是否可以做到。

AI的主要研究方法

从上个世纪50年代开始,人工智能一般采用两种方法进行研究:

第一种方法是首先制定规则,然后通过阶梯树解决问题。人工智能的先驱们,很多是逻辑学家,他们很喜欢这种方法。这种方法在上个世纪八十年代随着专家系统的诞生达到顶峰,例如,系统把从有机化学专家那儿获得的知识库和决策引擎封装在程序中,就能帮助化学家们识别不知名的分子。

问题是这样的系统在开发一个新模型的时候,你必须从头开始-那些手写的,具体的规则本身就非常困难,或者最后就不可能归纳起来运用在不同问题之间,例如语音识别的规则很难用在医学诊断上。

第二种方法是建立一个通用模型,这种方法只需要通过提供数据调整模型参数即可,是近期最受欢迎的方法。

有些模型与统计学方法相当接近,但最有名的那些模型是受神经科学启发而建立的,即人工神经网络。这种人工神经网络都有一个共有的通用方法:

【1它们由神经元构成】【2它们被组织在不同的层里,信息通过输入层,“隐藏层”(由于在中间),然后到达输出层】【3神经元和层之间存在数量巨大的连接(这些连接可能是向前的、向后的,甚至同一层内相邻的神经元之间也会存在连接)】【4这些连接代表了权重,表示某一个连接两端神经元的相对重要性,负权重代表一个神经元对另一个神经元存在抑制作用,正权重代表一个神经元对另一个神经元存在刺激作用。】

目前火爆的深度学习,估计大家现在都有所耳闻。深度学习就是一种由大量的层组成的上述类型的人工神经网络–因此很“深”,它在图像目标识别中取得了相当好的成果。

另外,机器学习模型分为三类,都是可能会遇到的:

有监督学习:给模型输入标识过的数据–例如一个典型的猫的图片,这张图片带着一个“猫”的标签。

无监督学习,给模型输入未标识的数据,靠它自己进行模式识别。因为数据经常不会被标识–想想所有堆积在你智能手机里的照片-并且标识过程很花时间,所以无监督学习方法虽然更难并且不够完善,但是看起来比有监督学习更有前景。

增强学习:每次模型迭代后,你都会给它一个评级。举一个DeepMind的例子,它训练了一个玩古老的雅达利游戏的模型,模型里的等级是游戏显示的分数,模型渐渐地学会了如何获得最多的分数。增强学习方法可能是三种方式中最不完善的,但是最近DeepMind算法的成功已经清楚地表明在增强学习上的努力获得了丰硕回报。

人工智能不是一棵树。而是一片灌木丛!

所以,当把人工智能解决的问题结合在一起时,会发现它是随着各种学派而变化的,这些学派还有自己的分支,有不同的目标和受到不同来源的启发……这样大概就能理解为什么想把这个领域的研究做个完美分类总是有问题的。请看下图–看出来问题了吗?

把“机器学习”和“语音”放在同一个层次是不准确的,因为你能用机器学习模型解决语音问题–他们不是并行的分支,但是,其他更加不同的分类更让人纠结。

因此,人工智能领域的难与美之处就在于它肯定不是一棵有序的树,而是一片灌木丛。一个分支的成长比另一个快,就会进入大家的视野,然后又轮到另一个分支发生类似的情况等等。有些分支会产生交叉,另一些不会,一些分支被淘汰,又有新的出现。

因此最核心的一条建议是:永远别忘了大方向和重点,否则你就会迷失!

人工智能有哪些研究方向

人工智能(ArtificialIntelligence,AI)是一门涵盖多个研究方向的学科领域,常见的研究方向包括但不限于以下几个:

1.机器学习(MachineLearning):研究如何使计算机能够从数据中学习,通过构建模型和算法实现自动化的模式识别、预测和决策。

2.深度学习(DeepLearning):一种机器学习的分支领域,研究通过构建深层神经网络模型实现高级特征提取和表示学习。

3.自然语言处理(NaturalLanguageProcessing,NLP):研究如何使计算机能够理解、生成和处理人类语言,包括文本分析、机器翻译、对话系统等。

4.计算机视觉(ComputerVision):研究如何使计算机能够理解和解释图像和视频数据,包括图像识别、目标检测、图像生成等。

5.强化学习(ReinforcementLearning):研究如何使计算机通过与环境交互学习最优的行为策略,通过试错和奖励机制来优化决策过程。

6.人机交互(Human-ComputerInteraction,HCI):研究如何设计和开发更加友好、高效的人机界面,使人与计算机之间的交互更加自然和智能。

7.知识表示与推理(KnowledgeRepresentationandReasoning):研究如何表示和组织知识,并通过推理和逻辑推断实现智能的问题解决和决策。

此外,还有智能优化、数据挖掘、模式识别、自动驾驶、人工智能伦理等等其他研究方向。随着人工智能的发展和应用,研究方向也在不断扩展和深化。

人工智能研究的主要方法有哪四种

1.功能模拟法

符号主义学派也可称为功能模拟学派。他们认为:智能活动的理论基础是物理符号系统,认知的基元是符号,认知过程是符号模式的操作处理过程。功能模拟法是人工智能最早和应用最广泛的研究方法。功能模拟法以符号处理为核心对人脑功能进行模拟。本方法根据人脑的心理模型,把问题或知识表示为某种逻辑结构,运用符号演算,实现表示、推理和学习等功能,从宏观上模拟人脑思维,实现人工智能功能。

功能模拟法已取得许多重要的研究成果,如定理证明、自动推理、专家系统、自动程序设计和机器博弈等。功能模拟法一般采用显示知识库和推理机来处理问题,因而它能够模拟人脑的逻辑思维,便于实现人脑的高级认知功能。

功能模拟法虽能模拟人脑的高级智能,但也存在不足之处。在用符号表示知识的念时,其有效性很大程度上取决于符号表示的正确性和准确性。当把这些知识概念转换成推理机构能够处理的符号时,将可能丢失一些重要信息。此外,功能模拟难于对含有噪声的信息、不确定性信息和不完全性信息进行处理。这些情况表明,单一使用符号主义的功能模拟法是不可能解决人工智能的所有问题的

2.结构模拟法

联结主义学派也可称为结构模拟学派。他们认为:思维的基元不是符号而是神经元,认知过程也不是符号处理过程。他们提出对人脑从结构上进行模拟,即根据人脑的生理结构和工作机理来模拟人脑的智能,属于非符号处理范畴。由于大脑的生理结构和工作机理还远未搞清,因而现在只能对人脑的局部进行模拟或进行近似模拟。

人脑是由极其大量的神经细胞构成的神经网络。结构模拟法通过人脑神经网络、神经元之间的连接以及在神经元间的并行处理,实现对人脑智能的模拟。与功能模拟法不同,结构模拟法是基于人脑的生理模型,通过数值计算从微观上模拟人脑,实现人工智能。本方法通过对神经网络的训练进行学习,获得知识并用于解决问题。结构模拟法已在模式识别和图像信息压缩领域获得成功应用。结构模拟法也有缺点,它不适合模拟人的逻辑思维过程,而且受大规模人工神经网络制造的制约,尚不能满足人脑完全模拟的要求。

3.行为模拟法

行为主义学派也可称为行为模拟学派。他们认为:智能不取决于符号和神经元,而取决于感知和行动,提出智能行为的“感知——动作”模式。结构模拟法认为智能不需要知识、不需要表示、不需推理;人工智能可能可以像人类智能一样逐步进化;智能行为只能在现实世界中与周围环境交互作用而表现出来。

智能行为的“感知——动作”模式并不是一种新思想,它是模拟自动控制过程的有效方法,如自适应、自寻优、自学习、自组织等。现在,把这个方法用于模拟智能行为。行为主义的祖先应该是维纳和他的控制论,而布鲁克斯的六足行走机器虫只不过是一件行为模拟法(即控制进化方法)研究人工智能的代表作,为人工智能研究开辟了一条新的途径。

尽管行为主义受到广泛关注,但布鲁克师的机器虫模拟的只是低层智能行为,并不能导致高级智能控制行为,也不可能使智能机器从昆虫智能进化到人类智能。不过,行为主义学派的兴起表明了控制论和系统工程的思想将会进一步影响人工智能的研究和发展。4.集成模拟法

上述3种人工智能的研究方法各有长短,既有擅长的处理能力,又有一定的局限性。仔细学习和研究各个学派思想和研究方法之后,不难发现,各种模拟方法可以取长补短,实现优势互补。过去在激烈争论时期,那种企图完全否定对方而以一家的主义和方法主宰人工智能世界的氛围,正被互相学习、优势互补、集成模拟、合作共赢、和谐发展的新氛围所代替。

采用集成模拟方法研究人工智能,一方面各学派密切合作,取长补短,可把一种方法无法解决的问题转化为另一方法能够解决的问题;另一方面,逐步建立统一的人工智能理论体系和方法论,在一个统一系统中集成了逻辑思维、形象思维和进化思想,创造人工智能更先进的研究方法。要完成这个任务,任重而道远。

人工智能研究的基本内容包括自动化吗

自动化属于人工智能的研究部分,只有结合自动化人工智能才能够发挥出来效益,如果光有理论上的程序,没有实际动作来实现那么自动化就能够帮助我们实现这个功能,所以说对人工智能来说自动化也是特别重要的一个基本研究内容。

人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。人工智能将涉及到计算机科学、心理学、哲学和语言学等学科。

可以说几乎是自然科学和社会科学的所有学科,其范围已远远超出了计算机科学的范畴,人工智能与思维科学的关系是实践和理论的关系,人工智能是处于思维科学的技术应用层次,是它的一个应用分支。

从思维观点看,人工智能不仅限于逻辑思维,要考虑形象思维、灵感思维才能促进人工智能的突破性的发展,数学常被认为是多种学科的基础科学,数学也进入语言、思维领域,人工智能学科也必须借用数学工具,数学不仅在标准逻辑、模糊数学等范围发挥作用,数学进入人工智能学科,它们将互相促进而更快地发展。

人工智能在教学中的的研究目标

人工智能的研究目的:

1、人工智能是研究使计算机来模拟人的某些思维过程和智能行为(如学习、推理、思考、规划等)的学科,主要包括计算机实现智能的原理、制造类似于人脑智能的计算机,使计算机能实现更高层次的应用。

2、人工智能的一个很重要的方向是数据挖掘技术,这种技术的原理是用计算机进行数据分析,然后进行人性化的推荐和预测。比如,我们电脑上的广告是根据我们日常浏览网页的兴趣进行推荐的,微博上、网站上最显眼的也是我们最感兴趣的内容,这些都是计算机分析而得出的。

3、人工智能的另外一大重要方向是自然语言处理技术,包括机器翻译、语音识别等等。其中语音识别是最核心、普及程度最高的一种自然语言处理技术。

语音识别技术是将人语音当中的词汇内容识别出来,通过技术手段,转换为计算机可读取的内容。通俗点来说,就是要让机器学会“听人话”,让计算机作我们的“耳朵”。

人工智能领域研究包括什么(人工智能领域研究包括什么方面)文档下载: PDF DOC TXT