一、人工智能哪个方向发展前景好
许多人工智能技术已被用于农业,如在无人机,喷洒农药除草、实时监测作物状况、材料采购、数据收集、灌溉、收获和销售。通过人工智能设备终端的应用,农业和畜牧业的产量得到了很大的提高,许多人工成本和时间成本也大大降低。
智能呼出系统、客户数据处理(订单管理系统)、通讯故障排除、病毒拦截(360等。),骚扰信息拦截等。
利用最先进的物联网信息技术,实现患者与医务工作人员、医疗服务机构与医疗设备的互动,逐步发展实现企业信息化。例如,健康监测智能可穿戴设备)、自动提示用药时间、禁忌症和剩余剂量的智能用药系统。
安防监控(数据实时联网、公安系统实时调查分析数据)、电信诈骗数据锁定、罪犯抓捕、消防救援领域(消防、人员援助、特殊区域作业)等。
路线规划、无人驾驶车、超速、违规驾驶等行为。
餐饮业(订餐、送菜、回收餐具、清洗)等。以及预订系统(酒店、机票、机票等。)查询、预订、修改、提醒等。
大数据股票分析、证券,行业趋势分析、投资风险估计等。
天气进行查询、地图导航、数据可以查询、信息技术推广推荐引擎基于网络用户的行为和属性用户浏览行为问题产生的数据,通过控制算法研究分析和处理,主动发现企业用户对于当前或潜在的需求,主动将信息推送至用户的浏览页面。
二、关于人工智能改变世界的事例
当前,新一代人工智能技术正在全球范围内蓬勃兴起,与大数据、区块链、5G等新技术相互融合、相互因应,为经济社会发展尤其是数字经济发展注入新动能,正在深刻改变着人类的生产生活方式。与此同时,如何在新技术变革浪潮中始终立于主动,实现人工智能等前沿科技领域有效治理,确保其持续健康发展,也成为国际国内、社会各界广泛关注。
三、人工智能的第三次发展浪潮始于人工神经网络
1、自1956年开始,人工智能经历了三起三落,出现了几次浪潮,现在人工智能已经是处于第三次浪潮了。
2、第一次浪潮(1956-1976年,20年),最核心的是逻辑主义
3、逻辑主义主要是用机器证明的办法去证明和推理一些知识,比如用机器证明一个数学定理。要想证明这些问题,需要把原来的条件和定义从形式化变成逻辑表达,然后用逻辑的方法去证明最后的结论是对的还是错的,也叫做逻辑证明。
4、早期的计算机人工智能实际上都是沿着这条路在走。当时很多专家系统,比如医学专家系统,用语言文字输入一些症状,在机器里面变换成逻辑表达,用符号演算的办法推理出大概得了什么病。所以当时的主要研究都集中在逻辑抽象、逻辑运算和逻辑表达等方面。
5、在第一次浪潮中,数学定理证明实际上是实现效果最好的,当时有很多数学家用定理思路证明了数学定理。为了更好地完成定理证明工作,当时出了很多和逻辑证明相关的逻辑程序语言,比如很有名的Prolog。
6、虽然当时的成果已经能够解开拼图或实现简单的游戏,却几乎无法解决任何实用的问题。
7、第二次浪潮(1976—2006年,30年),联结主义盛行
8、在第一次浪潮期间,逻辑主义和以人工神经网络为代表的联结主义相比,逻辑主义是完全占上风的,联结主义那时候不太吃香。然而逻辑主义最后无法解决实用的问题,达不到人们对它的期望,引起了大家的反思,这时候人工神经网络(也就是联结主义)就慢慢占了上风。
9、在70年代末,整个神经元联结网络、模型都有突飞猛进的进步,最重要的是BP前馈神经网络。1986年BP前馈神经网络刚出来的时候解决了不少问题,后来大家往更大的领域应用,实现了比较大的成果。在很多模式识别的领域、手写文字的识别、字符识别、简单的人脸识别也开始用起来,这个领域一下子就热起来,一时之间,人们感觉人工智能大有可为。随后十几年人们发现神经网络可以解决一些单一问题,解决复杂问题却有些力不从心。训练学习的时候,数据量太大,有很多结果到一定程度就不再往上升了。
10、这时期所进行的研究,是以灌输“专家知识”作为规则,来协助解决特定问题的“专家系统”为主。虽然有一些实际的商业应用案例,应用范畴却很有限,第二次热潮也就慢慢趋于消退。
11、第三次浪潮(2006—现在),基于互联网大数据的深度学习的突破
12、如果按照技术分类来讲,第二次和第三次浪潮都是神经网络技术的发展,不同的是,第三次浪潮是多层神经网络的成功,也就
四、人工智能服务有哪些
1、无人驾驶汽车是智能汽车的一种,也称为轮式移动机器人,主要依靠车内以计算机系统为主的智能驾驶控制器来实现无人驾驶。无人驾驶中涉及的技术包含多个方面,例如计算机视觉、自动控制技术等
2、人脸识别也称人像识别、面部识别,是基于人的脸部特征信息进行身份识别的一种生物识别技术。人脸识别涉及的技术主要包括计算机视觉、图像处理等。
3、人脸识别系统的研究始于20世纪60年代,之后,随着计算机技术和光学成像技术的发展,人脸识别技术水平在20世纪80年代得到不断提高。在20世纪90年代后期,人脸识别技术进入初级应用阶段。目前,人脸识别技术已广泛应用于多个领域,如金融、司法、公安、边检、航天、电力、教育、医疗等。
4、机器翻译是计算语言学的一个分支,是利用计算机将一种自然语言转换为另一种自然语言的过程。机器翻译用到的技术主要是神经机器翻译技术(NeuralMachineTranslation,NMT),该技术当前在很多语言上的表现已经超过人类。
5、生物特征识别技术包括很多种,除了人脸识别,目前用得比较多的有声纹识别。声纹识别是一种生物鉴权技术,也称为说话人识别,包括说话人辨认和说话人确认。
6、智能客服机器人是一种利用机器模拟人类行为的人工智能实体形态,它能够实现语音识别和自然语义理解,具有业务推理、话术应答等能力。
7、智能外呼机器人是人工智能在语音识别方面的典型应用,它能够自动发起电话外呼,以语音合成的自然人声形式,主动向用户群体介绍产品。
8、智能音箱是语音识别、自然语言处理等人工智能技术的电子产品类应用与载体,随着智能音箱的迅猛发展,其也被视为智能家居的未来入口。究其本质,智能音箱就是能完成对话环节的拥有语音交互能力的机器。通过与它直接对话,家庭消费者能够完成自助点歌、控制家居设备和唤起生活服务等操作
9、个性化推荐是一种基于聚类与协同过滤技术的人工智能应用,它建立在海量数据挖掘的基础上,通过分析用户的历史行为建立推荐模型,主动给用户提供匹配他们的需求与兴趣的信息,如商品推荐、新闻推荐等。
10、医学图像处理是目前人工智能在医疗领域的典型应用,它的处理对象是由各种不同成像机理,如在临床医学中广泛使用的核磁共振成像、超声成像等生成的医学影像
11、图像搜索是近几年用户需求日益旺盛的信息检索类应用,分为基于文本的和基于内容的两类搜索方式。传统的图像搜索只识别图像本身的颜色、纹理等要素,基于深度学习的图像搜索还会计入人脸、姿态、地理位置和字符等语义特征,针对海量数据进行多维度的分析与匹配。
五、人工智能的发展可能会造成哪些工程伦理方面的问题
1、一是失业和财富不平等问题。随着科学技术的发展,许多人类工作将被机器人取代,那么因此而失业人员的生活保障由谁负责?此外,人工智能学会自己做决定,这种决策能力将允许人工智能取代某些管理职位。人工智能取代人类劳动力将导致财富分配不均和贫富差距扩大。工人们拿到工资,公司支付工资,其余利润投入生产以创造更多利润。然而,机器人不需要报酬,这使得大公司能够通过人工智能获得更多利润,从而导致更大的财富不平等。在工程领域,人工智能可以创造新的就业机会,但由于数字很小,这并不能弥补失去的工作岗位数量。
2、二是安全性问题。安全性是人们评价一项技术的重要指标。安全问题也与道德问题密切相关。人工智能的安全性可以分为三个部分:错误和偏差、失控、滥用新技术。人类无法避免这些错误,人工智能也无法避免错误。人工智能具有自学的能力,人工智能可能会学习到错误的信息并造成安全威胁。例如,在自动驾驶汽车领域,由于背景算法的错误,人工智能可能导致严重的安全事故。至于缺乏控制,人工智能通过不断学习对复杂问题做出自己的判断。由于算法的复杂性,人们难以知道这些判断的依据。这些判断受到初始算法中人为偏见的影响。由于算法的设计缺乏透明度,人们无法有效地控制和监督后续过程,可能造成危害社会安全和稳定的后果。人工智能应用的有些领域是危险的,比如在军事工业中的应用带来了一系列威胁与挑战,在太空领域的应用可能对全球战略稳定和军事安全带来破坏性影响,对人类战争活动带来的影响更是不可忽视的。
3、三是隐私问题。人工智能的进步伴随着大数据的不断收集,而很多数据都与个人信息有关,未经允许收集这些信息会侵犯人们的隐私。人工智能在人脸识别中的应用对人们的隐私构成了极大的威胁。事实上,在人工智能进入我们的生活之前,人工智能已经收集了我们的隐私。每个用户在网站注册时都必须同意用户政策,这涉及隐私问题。由于大数据的发展,个人用户的隐私受到极大威胁。在享受人工智能带来的便利的同时,用户的隐私也受到了损害。
4、四是环境问题。在人工智能取代人类工作的过程中,会出现一些与环境有关的伦理挑战。首先,人工智能机器数量的快速增长将导致资源的大量消耗。第二,人工智能的替代非常快,过时的产品需要环保处理,而重金属污染问题很难处理。
5、五是控制和监督问题。人工智能需要监管,但目前没有普遍接受的行业标准。缺乏行业标准可能会导致产品本身的质量出现巨大差异。