一、人工智能研究的基本内容有哪些
人工智能研究的基本内容涵盖了多个方面,包括对人的智能的理论研究、对人工智能及其模型的设计、实现和测试的研究,以及对人工智能应用的研究等。具体来说,人工智能的研究内容可以分为以下几个方面:
1.人工智能基础理论:研究人工智能的学科体系、基本概念、原理和方法论等。
2.人工智能模型与算法:研究人工神经网络、深度学习、强化学习等人工智能模型和算法的设计和实现。
3.人工智能应用技术:研究人脸识别、语音识别、自然语言处理、机器翻译等人工智能应用技术。
4.人工智能与其他领域的交叉研究:例如人工智能与心理学、哲学、经济学、社会学、历史学等领域的交叉研究。
5.人工智能应用伦理和政策研究:研究人工智能在医疗、金融、法律、教育等领域的应用,以及由此带来的伦理和法律问题。
二、计算机的应用领域分为哪六个方面
计算机的6大应用领域:科学计算、实时控制、数据处理、计算机辅助、网络应用、人工智能。
科学计算是指利用计算机来完成科学研究和工程技术中提出的数学问题的计算。在现代科学技术工作中,科学计算问题是大量的和复杂的。利用计算机的高速计算、大存储容量和连续运算的能力,可以实现人工无法解决的各种科学计算问题。
过程控制是利用计算机及时采集检测数据,按最优值迅速地对控制对象进行自动调节或自动控制。采用计算机进行过程控制,不仅可以大大提高控制的自动化水平,而且可以提高控制的及时性和准确性,从而改善劳动条件、提高产品质量及合格率。因此,计算机过程控制已在机械、冶金、石油、化工、纺织、水电、航天等部门得到广泛的应用。
数据处理是指对各种数据进行收集、存储、整理、分类、统计、加工、利用、传播等一系列活动的统称。据统计,80%以上的计算机主要用于数据处理,这类工作量大面宽,决定了计算机应用的主导方向。
计算机辅助技术包括CAD、CAM和CAI等。计算机辅助设计是利用计算机系统辅助设计人员进行工程或产品设计,以实现最佳设计效果的一种技术。它已广泛地应用于飞机、汽车、机械、电子、建筑和轻工等领域。例如,在电子计算机的设计过程中,利用CAD技术进行体系结构模拟、逻辑模拟、插件划分、自动布线等,从而大大提高了设计工作的自动化程度。
计算机技术与现代通信技术的结合构成了计算机网络。计算机网络的建立,不仅解决了一个单位、一个地区、一个国家中计算机与计算机之间的通讯,各种软、硬件资源的共享,也大大促进了国际间的文字、图像、视频和声音等各类数据的传输与处理。
人工智能(ArtificialIntelligence)是计算机模拟人类的智能活动,诸如感知、判断、理解、学习、问题求解和图像识别等。现在人工智能的研究已取得不少成果,有些已开始走向实用阶段。例如,能模拟高水平医学专家进行疾病诊疗的专家系统,具有一定思维能力的智能机器人等等。
三、简述人工智能的四种途径
1、机器人、运输、就业机会、卫生保健。
2、一说到AI,首先会想到机器人。目前国外有很多芯片制造商已经投入了巨型超级计算机的小型芯片的研究。这将极大地提高机器人性能的发展,使他们能够更快,更容易地执行复杂的功能。
3、云的出现给人工智能的发展铺平了道路。连接到云的机器人不仅能够从自己的经验和交互中学习,而且还可以获取其他的机器人的经验和互交。加上语音理解方面取得了最新进展,这将增强他们与人互动的能力。预计到2025年左右,带有机械臂的AI设备将投入使用。不过机器人的制造和程序相对复杂,相关的制造商不得不继续研究更可靠的硬件和感知算法。
4、交通一直是人类所面临的难题,公路拥挤、车辆排除的气体对环境造成了影响。全球每年有很多人丧命于车祸。人工智能的兴起,将更好地帮助人类解决这些难题。传统的车辆将会逐渐替代掉,往后的交通事故变的更少。
5、人工智能的兴起的有利也有弊,它对传统行业造成了巨大的冲击,一些职业将会被人工智能所替代。但它的兴起造就新一批新的就业机会。虽然现在不能完全看出它在这方面的影响,但可以肯定的是,在未来高校、教育机构将会在人工智能教育上投入更多的资源。
6、尽管越来越多的人开始重视医疗保健,人工智能的出现将使它变得更引人瞩目。人工智能推动疾病治疗和精密医学领域的发展。目前,在收集许多必要的医学数据的基础上。使用的AI算法可以更好帮助医生分析患者的数据,更精准为患者治疗。
四、人工智能应用系统包括
人工智能一共分为自然语言处理、计算机视觉、语音识别、专家系统四个领域。
自然语言处理,英文NaturalLanguageProcessing,简写NLP。NLP这个概念本身过于庞大,可以把它分成“自然语言”和“处理”两部分。先来看自然语言。区分于计算机语言,自然语言是人类发展过程中形成的一种信息交流的方式,包括口语及书面语,反映了人类的思维,都是以自然语言的形式表达。
计算机视觉,也就是cv其实研究成像过程中的各种逆问题,试图从二维图像中恢复有意义的信息,这里需要格外提醒的一点就是逆问题通常不解析,这也和我们遇到的其他数学物理问题一样,正过程是解析的,有公式,逆过程不解析,没有解析解。
语音识别是计算语言学的跨学科子领域,利用其开发方法和技术,能够通过计算机识别和翻译口语。也被称为自动语音识别技术(ASR),计算机语音识别或语音到文本(STT)技术。它融合了语言学、计算机科学和电气工程领域的知识和研究。
专家系统是早期人工智能的一个重要分支,它可以看作是一类具有专门知识和经验的计算机智能程序系统,一般采用人工智能中的知识表示和知识推理技术来模拟通常由领域专家才能解决的复杂问题。一般来说,专家系统=知识库+推理机,因此专家系统也被称为基于知识的系统。是一个具有大量的专门知识与经验的程序系统,它应用人工智能技术和计算机技术,一个专家系统必须具备三要素:领域专家级知识,模拟专家思维,达到专家级的水平。
五、人工智能的发展时期7个阶段
1、50年代人工智能的兴起和冷落。人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题、求解程序、LISTP表处理语言等。但由于消解法推理能力的有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。
2、60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-Ⅱ语音处理系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议。
3、80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
4、80年代末,神经网络飞速发展。1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
5、90年代,人工智能出现新的研究高潮。由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,使人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深人到社会生活的各个领域。