一、世界十大人工智能先锋实验室
谷歌旗下实际上有两家互相独立的人工智能实验室,谷歌人工智能实验室负责谷歌自身产品相关的AI产品开发,大名鼎鼎的第二代人工智能系统TensorFlow就是在这里诞生的。
DeepMind是一家英国的人工智能公司,由人工智能研究者兼神经科学家DemisHassabis等人联合创立,2014年被谷歌收购。前段时间举世闻名的AlphaGo就是这家公司的成果。现在他们已经教会了计算机玩49种不同的电子游戏。
微软拥有自己的移动操作系统、翻译、地图、搜索等业务,其在人工智能上的研究和应用轨迹同谷歌十分相似。其亮点在于旗下分别定为智能助手和情感交互的小冰和小娜,目前小娜和小冰的对话水平已经属于语音助手界的顶级水平。
艾伦人工智能研究院是由微软的联合创始人PaulAllen建立的,致力于对AI的研究。目前主要专注于四个项目的研究:名为Aristo的机器阅读与推理程序,SemanticScholar的语义理解搜索程序,Euclid的自然语言理解程序,和Plato的计算机视觉程序。
Facebook现在可不单纯是一家社交网站了,其在技术方面的研究同样很前沿。Facebook需要由机器学习来对用户在NewsFeeds中看到的内容等大量信息进行自动管理。目前Facebook在AI领域的应用主要有语言翻译、强大的个人数字助理“M”和图像、视频分析程序等。
丰田实验室近期将收购发明双足机器人Atlas的波士顿动力。这个实验室既关注无人驾驶领域也在机器人领域有了相当大的进展。丰田实验室的主要制造成果有丰田生活辅助机器人(HSR),丰田KiroboMini机器人等。
Uber在去年也建立了自己的研发中心,希望在自动驾驶领域有所突破。5月底Uber的自动驾驶汽车刚刚获准进行无人驾驶汽车的实验。Uber先进科技中心的很多研究者是卡内基梅隆大学挖来的著名学者和研究人员。
亚马逊并没有为人工智能单独成立一个实验室,但其云服务部门AWS已经对云服务有了深刻的应用,亚马逊启用了一个叫“亚马逊机器学习”(AmazonMachineLearning)的服务,用于数据的处理和存储,来同微软和谷歌竞争,亚马逊Kiva机器人则可以提高仓储中心的工作效率,近期旗下的AlexaInternet还推出了一款叫Echo的智能音响兼语音助手。
IBM最近的超级电脑Watson安装有IBM研发的“语气分析工具”(ToneAnalyzer)。这一工具可以对人类的书写文字进行智能识别,识别出其中的高兴、悲伤等情绪。
现在,本田已有四家技术研发中心,研究领域涉及计算科学、计算机视觉、人工智能、机器人等多个方面。硅谷研发中心主要关注于车联网、大数据、语音识别等领域。
二、信息技术人工智能技术有哪些
大数据,或者称之为巨量资料,指的是需要全新的处理模式才能具有更强的决策力、洞察力和流程优化能力的海量、高增长率和多样化的信息资产。也就是说,从各种各样类型的数据中,快速获得有价值信息的能力,就是大数据技术。大数据是AI智能化程度升级和进化的基础,拥有大数据,AI才能够不断的进行模拟演练,不断向着真正的人工智能靠拢。
计算机视觉顾名思义,就是让计算机具备像人眼一样观察和识别的能力,更进一步的说,就是指用摄像机和电脑代替人眼对目标进行识别、跟踪和测量,并进一步做图形处理,使电脑处理成为更适合人眼观察或传送给仪器检测的图像。
语音识别技术就是让机器通过识别和理解过程把语音信号转变为相应的文本或命令的高新技术。语音识别技术主要包括特征提取技术、模式匹配准则及模型训练技术三个方面。语音识别是人机交互的基础,主要解决让机器听清楚人说什么的难题。人工智能目前落地最成功的就是语音识别技术。
语音识别目前主要应用在车联网、智能翻译、智能家居、自动驾驶方面,国内最具代表性的企业是科大讯飞,此外还有云知声、普强信息、声智科技、GMEMS通用微科技等初创企业。
自然语言处理大体包括了自然语言理解和自然语言生成两个部分,实现人机间自然语言通信意味着要使计算机既能理解自然语言文本的意义,也能以自然语言文本来表达给定的意图、思想等,前者称为自然语言理解,后者称为自然语言生成。自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。自然语言处理的终极目标是用自然语言与计算机进行通信,使人们可以用自己最习惯的语言来使用计算机,而无需再花大量的时间和精力去学习不很自然和习惯的各种计算机语言。
针对一定应用,具有相当自然语言处理能力的实用系统已经出现,典型的例子有:多语种数据库和专家系统的自然语言接口、各种机器翻译系统、全文信息检索系统、自动文摘系统等。国内BAT、京东、科大讯飞都有涉及自然语言处理的业务,另外还出现了爱特曼、出门问问、思必驰、蓦然认知、三角兽科技、森亿智能、乂学教育、智齿客服等新兴企业。
机器学习就是让机器具备人一样学习的能力,专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能,它是人工智能的核心。
机器学习已经有了十分广泛的应用,例如:数据挖掘、计算机视觉、自然语言处理、生物特征识别、搜索引擎、医学诊断、检测信用卡欺诈、证券市场分析、DNA序列测序、语音和手写识别、战略游戏和机器人运用。国内专注于机器学习的公司有优必选、图灵机器人、李群自动化、极智嘉科技、Rokid等。
三、人工智能的发展日新月异体现的哲学思想
1、首先,人类必须不断发挥智能潜力,推动人工智能向通用智能、人机混合智能发展。人类就是在不断的发明创造中进步的,未来人工智能依然由人类驾驭,人类的未来掌握在人类自己手中。
2、其次,人类必须善于治理人工智能,做到对人工智能的可知、可控、可用。人工智能未来发展的重要价值目标应是不断突破人类的认知极限,帮助人类实现对未来美好生活的向往。
3、最后,人类必须在与人工智能的共处共进中重塑主体地位,实现自我解放。尽管人工智能会对人类的主体地位带来一定影响,但人类不能因此而迷失自我,要牢记:人类解放不仅是一种发展愿景,更是一种发展现实,前者贯穿于后者之中,并通过后者来实现。
4、总之,基于马克思的技术哲学反思,人工智能(由人类开发和设计)不仅无法代替人类智能,更不会超过人类智能;人工智能无法像人类一样具有自我意识和思辨性。人工智能创造的巨大财富将使人类彻底摆脱由“稀缺”带来的矛盾,从而获得某种程度上的“解放”。我们要清醒地认识到:需要是出卷人,人工智能是答卷人,人类是阅卷人。使用人工智能技术赋能新时代,会让生活更美好、社会更美好!
四、人工智能的发展时期7个阶段
1、50年代人工智能的兴起和冷落。人工智能概念首次提出后,相继出现了一批显著的成果,如机器定理证明、跳棋程序、通用问题、求解程序、LISTP表处理语言等。但由于消解法推理能力的有限以及机器翻译等的失败,使人工智能走入了低谷。这一阶段的特点是:重视问题求解的方法,忽视知识重要性。
2、60年代末到70年代,专家系统出现,使人工智能研究出现新高潮。DENDRAL化学质谱分析系统、MYCIN疾病诊断和治疗系统、PROSPECTIOR探矿系统、Hearsay-Ⅱ语音处理系统等专家系统的研究和开发,将人工智能引向了实用化。并且,1969年成立了国际人工智能联合会议。
3、80年代,随着第五代计算机的研制,人工智能得到了很大发展。日本1982年开始了”第五代计算机研制计划”,即“知识信息处理计算机系统KIPS”,其目的是使逻辑推理达到数值运算那么快。虽然此计划最终失败,但它的开展形成了一股研究人工智能的热潮。
4、80年代末,神经网络飞速发展。1987年,美国召开第一次神经网络国际会议,宣告了这一新学科的诞生。此后,各国在神经网络方面的投资逐渐增加,神经网络迅速发展起来。
5、90年代,人工智能出现新的研究高潮。由于网络技术特别是国际互连网的技术发展,人工智能开始由单个智能主体研究转向基于网络环境下的分布式人工智能研究。不仅研究基于同一目标的分布式问题求解,而且研究多个智能主体的多目标问题求解,使人工智能更面向实用。另外,由于Hopfield多层神经网络模型的提出,使人工神经网络研究与应用出现了欣欣向荣的景象。人工智能已深人到社会生活的各个领域。