很多朋友对于人工智能医疗保健领域和人工智能医疗保健领域包括不太懂,今天就由小编来为大家分享,希望可以帮助到大家,下面一起来看看吧!
本文目录
人工智能在医疗产业如何实现创意发展?
近年来,智能医疗在国内外的发展热度不断提升。有人提出,“尽管安防和智能投顾最为火热,但AI在医疗领域可能会率先落地。”一方面,图像识别、深度学习、神经网络等关键技术的突破带来了人工智能技术新一轮的发展。大大推动了以数据密集、知识密集、脑力劳动密集为特征的医疗产业与人工智能的深度融合。另一方面,随着社会进步和人们健康意识的觉醒,人口老龄化问题的不断加剧,人们对于提升医疗技术、延长人类寿命、增强健康的需求也更加急迫。而实践中却存在着医疗资源分配不均,药物研制周期长、费用高,以及医务人员培养成本过高等问题。对于医疗进步的现实需求极大地刺激了以人工智能技术推动医疗产业变革升级浪潮的兴起。人工智能在医疗领域如何智能发展,主要表现在以下几个方面。
一、智能医疗的主要应用场景
“从全球创业公司实践的情况来看,智能医疗的具体应用包括洞察与风险管理、医学研究、医学影像与诊断、生活方式管理与监督、精神健康、护理、急救室与医院管理、药物挖掘、虚拟助理、可穿戴设备以及其他。”总结来看,如何创意发展,目前人工智能技术在医疗领域的应用主要集中于以下五个领域:
1、医疗机器人
“机器人技术在医疗领域的应用并不少见,比如智能假肢、外骨骼和辅助设备等技术修复人类受损身体,医疗保健机器人辅助医护人员的工作等。”目前实践中的医疗机器人主要有两种:
一是,能够读取人体神经信号的可穿戴型机器人,也成为“智能外骨骼”;
二是,能够承担手术或医疗保健功能的机器人,以IBM开发的达·芬奇手术系统为典型代表。
2、智能药物研发
智能药物研发是指将人工智能中的深度k学习技术应用于药物研究,通过大数据分析等技术手段快速、准确地挖掘和筛选出合适的化合物或生物,达到缩短新药研发周期、降低新药研发成本、提高新药研发成功率的目的。人工智能通过计算机模拟,可以对药物活性、安全性和副作用进行预测。借助深度学习,人工智能已在心血管药、抗肿瘤药和常见传染病治疗药等多领域取得了新突破。在抗击埃博拉病毒中智能药物研发也发挥了重要的作用。
3、智能诊疗
智能诊疗就是将人工智能技术用于辅助诊疗中,让计算机“学习”专家医生的医疗知识,模拟医生的思维和诊断推理,从而给出可靠诊断和治疗方案。智能诊疗场景是人工智能在医疗领域最重要、也最核心的应用场景。
4、智能影像识别
智能医学影像是将人工智能技术应用在医学影像的诊断上。人工智能在医学影像应用主要分为两部分:一是图像识别,应用于感知环节,其主要目的是将影像进行分析,获取一些有意义的信息;二是深度学习,应用于学习和分析环节,通过大量的影像数据和诊断数据,不断对神经元网络进行深度学习训练,促使其掌握诊断能力。
5、智能健康管理
智能健康管理是将人工智能技术应用到健康管理的具体场景中。目前主要集中在风险识别、虚拟护士、精神健康、在线问诊、健康干预以及基于精准医学的健康管理。
(1)风险识别:通过获取信息并运用人工智能技术进行分析,识别疾病发生的风险及提供降低风险的措施。
(2)虚拟护士:收集病人的饮食习惯、锻炼周期、服药习惯等个人生活习惯信息,运用人工智能技术进行数据分析并评估病人整体状态,协助规划日常生活。
(3)精神健康:运用人工智能技术从语言、表情、声音等数据进行情感识别。
(4)移动医疗:结合人工智能技术提供远程医疗服务。
(5)健康干预:运用AI对用户体征数据进行分析,定制健康管理计划。
智能外骨骼
俄罗斯ExoAtlet公司生产了两款“智能外骨骼”产品:ExoAtletⅠ和ExoAtletPro。前者适用于家庭,后者适用于医院。ExoAtletⅠ适用于下半身瘫痪的患者,只要上肢功能基本完整,它能帮助患者完成基本的行走、爬楼梯及一些特殊的训练动作。ExoAtletPro在ExoAtletⅠ的基础上包括了更多功能,如测量脉搏、电刺激、设定既定的行走模式等。日本厚生劳动省已经正式将“机器人服”和“医疗用混合型辅助肢”列为医疗器械在日本国内销售,主要用于改善肌萎缩侧索硬化症、肌肉萎缩症等疾病患者的步行机能。
手术机器人
世界上最有代表性的做手术的机器人就是达·芬奇手术系统。“达·芬奇手术系统分为两部分:手术室的手术台和医生可以在远程操控的终端。手术台是一个有三个机械手臂的机器人,它负责对病人进行手术,每一个机械手臂的灵活性都远远超过人,而且带有摄像机可以进入人体内的手术,因此不仅手术的创口非常小,而且能够实施一些人类一生很难完成的手术。在控制终端上,计算机可以通过几台摄像机拍摄的二维图像还原出人体内的高清晰度的三维图像,以便监控整个手术过程。目前全世界共装配了3000多台达·芬奇机器人,完成了300万例手术。”美国硅谷公司Atomwise通过IBM超级计算机,在分子结构数据库中筛选治疗方法,评估出820万种药物研发的候选化合物。2015年,Atomwise基于现有的候选药物,应用人工智能算法,在不到一天时间内就成功地寻找出能控制埃博拉病毒的两种候选药物。除挖掘化合物研制新药外,美国Berg生物医药公司通过研究生物数据研发新型药物。“Berg通过其开发的InterrogativeBiology人工智能平台,研究人体健康组织,探究人体分子和细胞自身防御组织以及发病原理机制,利用人工智能和大数据来推算人体自身分子潜在的药物化合物。这种利用人体自身的分子来医治类似于糖尿病和癌症等疑难杂症,要比研究新药的时间成本与资金少一半。”国外最早将人工智能应用于医疗诊断的是MYCIN专家系统。我国研制基于人工智能的专家系统始于上世纪70年代末,但是发展很快。早期的有北京中医学院研制成‘关幼波肝炎医疗专家系统’,它是模拟著名老中医关幼波大夫对肝病诊治的程序。上世纪80年代初,福建中医学院与福建计算机中心研制的林如高骨伤计算机诊疗系统。其他如厦门大学、重庆大学、河南医科大学、长春大学等高等院校和其他研究机构开发了基于人工智能的医学计算机专家系统,并成功应用于临床。在智能诊疗的应用中,IBMWatson是目前最成熟的案例。IBMWatson可以在17秒内阅读3469本医学专著、248000篇论文、69种治疗方案、61540次试验数据、106000份临床报告。2012年Watson通过了美国职业医师资格考试,并部署在美国多家医院提供辅助诊疗的服务。目前Watson提供诊治服务的病种包括乳腺癌、肺癌、结肠癌、前列腺癌、膀胱癌、卵巢癌、子宫癌等多种癌症。Watson实质是融合了自然语言处理、认知技术、自动推理、机器学习、信息检索等技术,并给予假设认知和大规模的证据搜集、分析、评价的人工智能系统。贝斯以色列女执事医学中心(BIDMC)与哈佛医学院合作研发的人工智能系统,对乳腺癌病理图片中癌细胞的识别准确率能达到92%。美国企业Enlitic将深度学习运用到了癌症等恶性肿瘤的检测中,该公司开发的系统的癌症检出率超越了4位顶级的放射科医生,诊断出了人类医生无法诊断出的7%的癌症。
风险识别
风险预测分析公司Lumiata,通过其核心产品——风险矩阵(RiskMatrix),在获取大量的健康计划成员或患者电子病历和病理生理学等数据的基础上,为用户绘制患病风险随时间变化的轨迹。利用MedicalGraph图谱分析对病人做出迅速、有针对性的诊断,从而对病人分诊时间缩短30%-40%。
虚拟护士
NextIT开发的一款APP慢性病患者虚拟助理(AlmeHealthCoach),“AlmeHealthCoach是专为特定疾病、药物和治疗设计配置。它可以与用户的闹钟同步,来触发例如‘睡得怎么样’的问题,还可以提示用户按时服药。这种思路是收集医生可用的可行动化数据,来更好的与病人对接。”该款APP主要服务于患有慢性疾病的病人,其基于可穿戴设备、智能手机、电子病历等多渠道数据的整合,综合评估病人的病情,提供个性化健康管理方案。美国国立卫生研究院(NIH)投资了一款名为AiCure的App。这款App通过将手机摄像头和人工智能相结合,自动监控病人服药情况。
精神健康
2011年,美国Ginger.IO公司开发了一个分析平台,通过挖掘用户智能手机数据来发现用户精神健康的微弱波动,推测用户生活习惯是否发生了变化,根据用户习惯来主动对用户提问。当情况变化时,会推送报告给身边的亲友甚至医生。Affectiva公司开发的情绪识别技术,通过网络摄像头来捕捉记录人们的表情,并能分析判断出人的情绪是喜悦,厌恶还是困惑等。
移动医疗
Babylon开发的在线就诊系统,能够基于用户既往病史与用户和在线人工智能系统对话时所列举的症状,给出初步诊断结果和具体应对措施。AiCure是一家提醒用户按时用药的智能健康服务公司,“其利用移动技术和面部识别技术来判断患者是否按时服药,再通过APP来获取患者数据,用自动算法来识别药物和药物摄取。”
健康干预
Welltok通过旗下的CaféWellHealth健康优化平台,运用人工智能技术分析来源于可穿戴设备的MapMyFitness和FitBit等合作方的用户体征数据,提供个性化的生活习惯干预和预防性健康管理计划。根据方正证券发布的互联网医疗深度报告,“中国互联网医疗发展经历了三个阶段:信息服务阶段,实现人和信息的连接;咨询服务阶段,实现人和医生连接;诊疗服务阶段,实现人和医疗机构的连接。”在实际的产业发展中,中国智能医疗仍处于起步阶段,但赖于资本的追捧,多家智能医疗创业公司已顺利获得融资。在未来的发展中,国内公司应当加强数据库、算法、通用技术等基础层面的研发与投资力度,在牢固基础的同时进一步拓展智能医疗的应用领域。
二、对于人工智能在医疗领域的应用价值,业界一直争论不休,有人认为会颠覆整个医学体系,拯救更多的患者;而也有人认为医学人工智能的发展会逐渐淘汰医生这一职业。那么,人工智能“插足”医疗领域还有哪些创意发展呢?
?1、人工智能助力辅助诊断
事实上,国外早已有科学家和医生正在利用人工智能来从海量数据,比如电子健康记录、影像诊断、处方、基因组分析、保险记录甚至是可穿戴设备所产生的数据中来提取有用信息,来为特定的一类人群而不是特定疾病来制定合理的卫生保健计划。最为知名的当属IBM的“Waston”医生。
人的大脑的记忆容量和时间是有限的,难以记住并理解日新月异的医学研究论文和上万种疾病。但人工智能不同,它可以通过深度学习技术,可以不间断从大量医学书籍、电子病历等完善自己。然后通过认知分析技术,凭借从各种渠道搜集的海量数据,迅速给出“意见”,指导医生做出诊断和治疗决策,并且不会因为人的各情绪导致缺诊或误诊,同时患者能够更快速地获得医疗服务,而医疗机构也可节省成本。
对于医生来说,通过人工智能可以辅助诊断,减少筛选对比病例的时间,为患者制定准确的治疗方案;对于患者来说,可以更快速的完成健康检查,获得更为精准的诊断建议,节省大量的时间、金钱成本;对于医疗来讲,深度学习可以提高准备效率,同进系统性降低医疗成本。
2、基因分析和精准医疗
当然,人工智能不仅仅只在辅助诊疗方面发光发热,它在基因分析和精准医疗方面更能展现自己的优势。
精准医疗要想实现精准一定是建立在数据之上的,主要的是基因数据。对于很多疾病,尤其是罕见病来说,找到基因上微小的变化就很可能找到了解决问题的钥匙,但这同样也意味着巨大的计算量。在没有深度学习之前,这几乎是不可想象的,但随着深度学习的出现,像IBMWaston、Google大脑、百度大脑这些应用深度学习的计算处理系统,他们能够不断的通过已有数据进行训练,在“黑盒”中得出规则,并完成一些罕见病的早发现、早诊断。
人工智能的计算能力还有效地推动更多精准治疗新药的出现,让我们攻克现有的一些疑难杂症,比如癌症、艾滋病等一些当前医疗水平较难处理的疾病。在美国像AtomWise、FlatironHealth等公司已经在尝试这方面的创新。
三、远程医疗会更加创意发展,也是趋势。
远程医疗是医疗健康行业的一个重要组成部分,以价值为基础的医疗健康作为一种产生额外收入的方式,降低成本,提高患者满意度。在过去的十年中,医疗健康中一个最大的变化是远程医疗正在经历快速增长,并且在许多行业中得到了广泛应用。
?通过强大的经济、社会和政治力量的推动,远程医疗正迅速占领市场,最值得注意的是,对于更廉价和更易获得的医疗健康有日益增长的消费需求。这些力量正在推动着医疗健康服务者的成长,以促使他们的商业模式能适应新的医疗健康市场。
同时需要我们纠正错误的观念,即远程医疗产生了巨大的财政压力或依赖巨额资助。智能健康系统能为建立可持续的远程医疗方案提供指导,带来营收,不只是节约了成本,同时提高患者护理和满意度。美国远程医疗协会进行的研究表明,远程医疗可以为患者,供应商和付款人节省财物,与传统医疗健康的做法相比,远程医疗突出优势是能减少患者到医院的就诊频率和在耗费时间。
预计全球远程医疗市场2020年将以复合年增长率百分之14.3的速度扩展,与2014年的143亿美元相比,最终达到362亿美元。虽然对便利性、创新性的需求越来越大,其中个性化医疗健康体验可能是最大的因素,但其他力量也在起着作用。
这五大趋势将推动远程医疗的创意发展,持续增长和医疗健康服务的转型:
1.医疗报销比率提升
虽然医疗报销不足总被认为是远程医疗实施的主要障碍,但目前的变化正不断推动远程医疗的扩展。纳税人终于开始认识到许多医疗机构已经意识到了远程医疗能节约成本、提高患者满意度。
私人和政府的纳税人将继续扩大远程医疗的覆盖面,随着消费者对该项技术经验的不断获取和对远程医疗服务的需求越来越高。一些健康计划已经开始支持远程医疗的覆盖范围,他们认为一种以价值为基础的医疗护理,能改善病人的经验和提供可观的成本节约。
在政府方面,2016年将尤其看到在更多的医疗保险机构和医疗保险优势计划中远程医疗服务的覆盖面。
虽然报销是远程医疗实施的主要障碍,但关于远程医疗服务的新制定的法律已经在州一级开始实施,并且2016年这些法律将在这些州得到实行。同样,供应商也变得越来越容易接受探索支付模型超越费用的服务偿还机制,并且2016年这些计划将继续增长。例如,根据机构之间的合同,并且患者愿意支付这些方便,有价值的服务。
对于私人保险公司,使用虚拟医疗诊治未成年人健康问题以降低成本的呼吁日益强烈。比如,2014年1月,商保Cigna已通过远程医疗企业MDLIVE,为客户提供远程医疗费用的报销。
2015年4月,UnitedHealthcare宣布自费的雇主客户将享受虚拟远程诊治作为增值服务,2016年将覆盖到个人和更多企业。未来,UnitedHealth预测,近2000万的成员将有机会通过其三家网络合作伙伴获得远程医疗服务。
对于政府医疗保险,远程医疗在过去的二十年中已经得到了广泛的应用。虽然医疗保险目前只覆盖到农村地区的远程医疗患者,2016年开始,政府的远程医疗计划将迅速扩张。退伍军人管理局最近扩大了远程医疗的使用范围,以增加病人的咨询服务。
2.国际交流上升
2016年更多的美国医院和医疗服务提供者将与海外医疗机构建立联系,传播美国医疗健康专业知识。这些跨境合作伙伴关系将对更多的病人提供帮助,创造额外的收入,并有助于加强国际品牌的影响力。
根据美国医学协会的调查,美国200多个学术医疗中心已经在世界其他地区提供以视频为基础的咨询服务。虽然有许多只是试点方案,2016年将看到这些国际性方案的成熟和商业化,因为对这两个国家的参与者来说,是一个双赢的局面。
像很多中国这样的国家,中产阶级日益增长的购买力,正给更多的患者提供更好的治疗手段和机会,以寻求来自西方医疗中心的治疗。我们已经注意到了国际远程医疗营利性和非营利性的模式,注意与发展中世界的医院与组织合作,扩大医疗健康的便利性,或在国家财富集中领域为客户提供商业保健服务。
3.州级政府起带头作用
美国各州政府在远程医疗扩张中的带头示范作用。根据一项有关健康政策的研究中心的研究称,在2015届立法会议期间,42个州通过并实施了200多个远程医疗相关的立法。目前,美国29个州和哥伦比亚特区已经制定了法律,要求医疗方案覆盖远程医疗服务。2016年,对于以远程医疗为基础的服务法案在各州立法机关通过,我们将看到更多的法案支持医疗保险的覆盖范围。
虽然国家立法者正引领着将远程医疗纳入医疗健康系统。医疗健康和医疗补助服务中心正在考虑扩大医疗保险覆盖范围,美国众议院通过的一项法案将帮助支付医生提供远程医疗服务的费用,无论医疗健康受益人在任何位置。
4.零售诊所和远程医疗中心的崛起
最近的一个塔华森研究发现,超过百分之35的雇主提供医疗设施,提供远程医疗服务,另外百分之12计划在未来两年内增加这些服务。其他研究表明,2017年,近百分之70的雇主将提供远程医疗服务,雇员将因此受益。国家跨越远程医疗公司如MDLIVE和现在的上市公司Teladoc的发展壮大,他们为雇主和其他群体提供具体需求的医疗服务,是对这些服务需求的反映。
此外,消费者也越来越愿意到零售医疗诊所就诊,并为方便和多好处的远程医疗服务“慷慨解囊”,当远程医疗健康不被他们的保险计划所覆盖时。
CVSHealth和Walgreens已经公开宣布计划将远程医疗基础服务要素进行组合,并把他们放在适当的位置。
5.更多医疗机构利用科技提高服务和降低成本
2016年将是远程医疗和ACOs年。由于医疗健康负责机构的出现(ACOs),医疗保险受益人的数量从去年到今年一直在增长,早期的迹象表明,ACOS受益人的数量2016可能会继续增加。这些组织为远程医疗健康的发展提出了一个理想的途径。
虽然CMS提供了以共同储蓄支付形式为模式的巨大的成本削减奖励,只有百分之27的ACOS去年取得了足够的储蓄来获得这些奖励。同时,根据最近的一项研究,只有百分之20的ACOs使用远程医疗服务。我们相信,2016年,为应对激励指标的广泛需求,再加上低通过率会致使远程医疗得到更广泛的应用。
人工智能在医疗领域的应用怎么样?
人工智能在医疗领域的前景
人工智能的发展对于医疗行业的改进起着巨大的推进作用,能够有效改善服务质量,提高医疗诊断的精准度。借助于大数据分析技术以及人工智能的深度学习,医疗行业将会出现一大批先进的医疗应用,从而有效控制医疗成本,同时为用户提供更加满意的服务。
医疗行业是未来人工智能应用的重要领域,拥有巨大的发展空间。权威研究机构WinterGreenResearch曾预计,人工智能技术还将在原有基础上持续发展下去,世界范围内的医疗决策支持市场总量将在近几年突破2000亿美元,甚至更多。
国内医疗与人工智能的发展伴随“健康中国”战略的提出,国内众多业内人士也看好医疗领域未来的发展前景。2017—2025年,国内基层医疗事业将进入快速发展期,医疗健康产业注定会迅猛发展,在这期间,必须通过大数据与人工智能的应用来完善该领域的服务体系,促使医疗行业的发展走向成熟。
近几年,中国的医疗行业同样呈现迅猛发展姿态,自2011年起的5年时间里,仅医疗设备行业的市场规模就增加到了原来的两倍,达到3000多亿元。另外,如今国家正加大对医疗领域发展的支持力度,该行业的发展将会更加迅猛,其中,医疗设备领域的发展将尤为明显。
随着我国对基础医疗建设的重视以及家庭医生制度的实施,医疗行业的产业结构将产生变化,医疗市场的前景会更为广阔。业内人士推测,在今后的发展过程中,医疗行业将突破传统发展模式,与此同时,医疗设备、药品、保健产品等也将得到进一步发展,等到新型医疗健康发展模式进入稳定阶段时,整个大健康医疗产业的市场规模将达到10万亿元。
人工智能在医疗领域的应用人工智能,一个在几年前似乎还在科幻电影和小说中的概念,如今已经可以改变各个领域,那么人工智能在医疗领域都可以提供什么样的价值呢?
机构信息化
1946年第一台电子数字计算机的发明,意味着信息化时代的到来,在之后的数十年中,科技进步的发展,大大加快了这一进程,医疗机构走信息化管理之路是大势所趋。医疗机构根据业务及管理需要,医疗信息化不仅仅能够提高工作效率,并且能够再次利用,根据大量的医疗信息分析出疾病和客观因素的联系,从而可以提高疾病的预测和预警能力,医疗机构信息化增强了综合服务能力。
医学影像识别
图像识别一直是人工智能的主要方向之一,LeNet的出现让图像识别商业化的路越来越近,2012年AlexNet奠定了人工智能准确识别图像的基调,这也是对于医学影像识别成真的前提。
医学影像包含了海量数据,即使有经验的医生有时也显得无所适从。医学影像的解读需要长时间专业经验的积累,医生的培养周期相对较长,而人工智能在对图像的检测效率和精度两个方面,都可以做得比专业医生更快,并可减少人为操作误判率。
国内的Airdoc便是这领域的领先企业,该团队的图像识别技术已经处于世界领先水平,并且可以准确识别很多医学领域的图像,比如糖尿病性视网膜病变的识别,准确率已经和顶级三甲医院的眼科医生水平相当。
临床辅助系统
世界卫生组织网站上ICD-10编码的疾病有7.8万多种,症状也有几万种。对于人类医生来说很难全部记住,并且在短期内进行诊断。特别是在医疗资源有限的地方,患者数量太多,甚至都可能没有时间和主治医师进行更深一步的沟通。
人工智能具有和人类一样思考的能力,并且在记忆力、运算速度和精度上都可以优于人类,基于人工智能开发辅助诊断系统,可以提高广大经验不足的医疗工作者的工作能力,从而可以用在早期筛查、诊断、康复、手术风险评估场景,特别是对于基层医院来说,作用尤其大。
医疗大数据
大数据作为未来信息数据的发展方向,基于大数据理论的相关技术对现代人工智能技术的演进进程起到了重要的助推作用。在医疗中,人工智能可以挖掘大数据,并且让数据发挥最大的价值。生物信息学家、中科院院士陈润生认为人工智能和大数据能够催生精准医疗,精准医疗就是把组学大数据用到临床的医学当中来,提高医疗诊断的准确度,提高治疗的效果。
通过人工智能和医疗大数据的结合,可以得到很多预测性的数据,比如评估患者身体状态,进行适当干预,这样的话有些疾病不发展,有些疾病减轻他的程度,提高他的生活质量,这样就把整个医疗健康体系的关口前移,在没有病之前就提出评估与保证。
医药开发
医药研发需要不断试错,最终才能研制成功,因此不仅仅需要漫长的时间,并且成本高昂,数据显示,所有进入临床试验阶段的药物,只有不到12%的药品最终能够上市销售,而且一款新药的平均研发成本高达26亿美金。
有研究人员统计,大约15%~20%的新药成本都耗费在探索阶段。通常情况下,这意味着高达几亿美元的支出,以及3~6年的工作。如今,通过深度学习分析大量的生物科学知识——专利、基因组数据和所有生物医学期刊和数据库等,找出关联并提出相应的候选药物,进一步筛选具有对某些特定疾病有效的分子结构,有希望通过AI将这一过程缩短至几个月,并大幅降低研发成本。
世界巨头加大人工智能与医疗结合领域的投入当前,众多国内外实力型企业都开始将目光投向人工智能技术与医疗行业的结合发展,许多新兴创业公司也不甘落后,准备在这个领域展开布局。
IBM
微软
谷歌
加拿大DeepGenomics公司
华大基因
Atomwise公司
腾讯
尽管现在人工智能技术在医疗领域的应用尚未进入成熟阶段,但是,该技术在医疗领域应用的前景是无限宽广的。随着科技的进步,越来越多的企业采用人工智能技术进行数据分析及价值挖掘,人工智能与深度学习在医疗领域的应用也将进一步展开。
医学领域的AI除了看医疗影像还能做什么?
医学领域的AI除了看医疗影像之外还能动手术啊。
手术机器人是医学领域AI中已经发展非常长时间的一项技术,而且也已经在临床中投入了应用,也取得了不错的效果。
最开始设计手术机器人的目的主要是看中了手术机器人的精准操作和手术机器人的不知疲惫,因为我们也都说机器人目前主要的还是工业机器人,还到不了特别智能化机器人的地步,而工业机器人在精准操作上已经发展了很多年,是具备深厚的技术积累的,如果将一些手术能够定量化设计,辅以机器人的精准操作,那么是能够做到让创口尽可能减小,让手术时间尽可能缩短的。
专门用于外科手术的医疗机器人在90年代初诞生了,ROBODOC就是其中的代表。1986年,美国IBM的ThomasJ.Watson研究中心和加利福利亚大学合作开发,并于1992年成立了IntegratedSurgicalSystems公司,推出第一个被FDA通过的手术机器人——ROBODOC。该机器人可完成全髋骨替换、髋骨置换及修复和膝关节置换等手术,髋关节置换过程中,它对股骨的调整精确度达到96%,而医生的手工精确度只有75%。现在目前全球应用最广泛的机器人是达芬奇,已经成功的推出了四代产品。所以总结一下,手术机器人有以下好处:
1、创口更小,更加平稳,不受人的生理和心理因素的影响。
2、没有感染问题,对于一些特殊手术,能够更好的保护医生的安全
3、可以远程操作,对于医疗资源的均衡有一定的好处。
医疗行业人工智能有哪些应用场景?
医疗行业是人工智能应用最早,也是令人类最为受益的一个应用领域,主要在以下几个方面:医疗影像分析、病理分析诊断、医疗手术、药物研发、患者关怀等。为此,许多技术公司在这方面投入了大量的研究,使得人工智能技术进入世界各地的医疗体系。
比如,在医学领域,早在2013年,美国一个医疗机构曾借助IBMWatson来帮助阅读和分析医学文献——仅仅几个星期的时间,就从2300万份候选文献中选出了7万篇相关文章,并从中准确找到了7种可修改P53的蛋白质(P53是与很多癌症有关的一种重要蛋白质)。而在使用Watson之前,这种发现结果通常需要整个生命科学行业的顶级医生花7年时间来完成!现如今,IBMWatson已经可以做到在10分钟内阅读和剖析20,000,000份医学文献、论文和病理。
此外,据了解借助于计算机视觉技术,Watson只靠图片就能准确诊断患者是否患有黑色素瘤。目前,其对皮肤癌诊断的正确率高达了97%,已经超出了专家的平均诊断水平(85%)。
这里再列举几个其它案例:
1.谷歌AI可以通过眼部扫描预测心脏疾病风险
日前,谷歌和同属Alphabet集团的VerilyLifeSciences公司共同进行了一项研究,通过深度学习算法分析个体的视网膜图像从而准确预测心脏病。
该算法可以通过对视网膜眼底照片的识别和分析,判断个体是否吸烟、血压、年龄、性别、是否曾经有过心脏病史,甚至是种族,这些与心血管疾病相关的危险因素。
据了解,该算法的训练数据用来自于284,335名患者,包括来自英国Biobank数据库的48101名患者和来自EyePACS数据库的236244名患者。不仅能够预测心血管疾病的风险,还能预测发作时间。
2.IDx公司用21年研发了能预诊糖尿病患者失明的AI系统
最近,美国IDx公司宣布,其创始人MichaelAbramoff花费21年开发创建的AI自动系统IDx-DR,正在由美国食品和药物管理局(FDA)加快审查,并将很快投入临床使用。该系统能够用于尽早发现糖尿病患者失明的主要原因——糖尿病视网膜病变,从而加以预防、提前治疗。
到今年,IDx公司和FDA已经用了7年时间来确定评估系统准确性和安全性的标准。
值得一提的是,这一系统在没有眼科专家的帮助下,就能自行诊断。由于目前许多患者经常都要等待数周或数月才能看到眼科专家,无法及时诊断,因此,这一系统的出现患者来说可能会产生巨大影响。
据Abramoff介绍,IDx公司还对系统做了一些必要的调整,以便从实验室走出来,真正进入诊所,得以应用。比如,IDx团队添加了一个互动组件,当AI的诊断质量足够高时,系统就会将拍摄的视网膜图像情况反馈给护士或医生。在对公开数据集进行早期测试后,IDx公司在去年夏天完成了一项900人的临床试验,将进行了四小时培训的系统及具有10年以上经验的专家通过摄取和分析视网膜图像,从而提供的诊断结果相比较。虽然Abramoff还拒绝分享审查结果,但他指出:“我们对此非常兴奋。”
3.科学家利用AI预测人类死亡时间,从而改善医疗服务质量
由吴恩达与斯坦福大学计算机科学系教授AnandAvati、斯坦福大学生物医学信息学研究中心KennethJung、LanceDowning与NigamH.Shah,以及斯坦福大学医学院StephanieHarmon六位斯坦福大学科学家组成的研究小组正在研究如何利用人工智能技术预测人类的死亡时间,从而改善对其的姑息治疗程度,或者对患有严重疾病的患者提供专门的护理。
据统计,在美国所有需要接受姑息治疗的病人(占所有住院病人7%-8%)中,只有不到一半的人真正接受了这种治疗。这与医生在判断患者的生存时长方面往往过于乐观有很大的关系。此外,姑息治疗的相关护理人员及资源也较为有限。因此,为了尽可能帮助更多适合此种安慰疗法的病患,斯坦福大学的研究小组希望利用人工智能技术发现剩余生命仅为三到十二个月的对象。
以往的做法是,由医生检查每一份病例表,借此确定病患是否有资格获得姑息治疗方式。但这整个过程非常耗时,而且医生的个人偏见可能对最终护理决定产生影响。
而通过人工智能技术,就能够让深度学习算法自动评估住院病人的EHR(电子健康记录)数据,帮助姑息治疗怀团队判断哪些病人可能需要姑息治疗。
为了进行这项研究,研究小组使用了斯坦福医院及露西尔-帕卡德儿童医院中的200万份成人和儿童电子病历作为数据样本。
但需要强调的是,这套模型的预测结果仅被用于在姑息治疗小组进行病例审查(及自动转诊)时推荐部分符合条件的病患。人类医生仍然负责整个审查流程的主导工作,而该项目所得出的结果只作为符合姑息治疗条件的参考,而非对死亡时间的直接预测。
答案来自科技行者团队最爱谈应用的Dora老师
END,本文到此结束,如果可以帮助到大家,还望关注本站哦!