人工智能工程伦理道德(人工智能 伦理道德)

Bitget下载

注册下载Bitget下载,邀请好友,即有机会赢取 3,000 USDT

APP下载   官网注册

各位老铁们,大家好,今天由我来为大家分享人工智能工程伦理道德,以及人工智能 伦理道德的相关问题知识,希望对大家有所帮助。如果可以帮助到大家,还望关注收藏下本站,您的支持是我们最大的动力,谢谢大家了哈,下面我们开始吧!

本文目录

  1. 人工智能涉及个人隐私应用事例
  2. 人工智能遵循的四大基本道德
  3. 什么是可信人工智能
  4. 斯坦福AI看脸即知性取向,人工智能还有哪些令人意想不到的能力?

人工智能涉及个人隐私应用事例

近日,马斯克坦承特斯拉汽车内摄像头可以监视驾驶员一事,引发了车主对智能汽车内部安装摄像头与窃听器的不满。虽然这两种设备在智能汽车生产厂商眼中起到的是对驾乘人员的保护作用,但依然无法打消车主心中的疑虑。

智能汽车逐步发展,无人驾驶也在“路上”。未来,如何兼顾驾乘人员的安全与隐私,是个值得探讨和重视的问题。

日前,国外有用户在社交网站向特斯拉CEO埃隆·马斯克询问特斯拉的车内摄像头是否可以检测车主目光,马斯克回复“是的”。引发舆论关注的原因是,这是特斯拉方面首次承认通过车内摄像头来监视驾驶员。

在该用户提出疑问前,马斯克就曾在社交网站上发文称将收回一些车主的完全自动驾驶能力测试版(FSDbeta)的试用权限。原因是这些车主在使用FSDbeta功能时,没有对道路情况给予足够的关注。马斯克称,之所以是beta版本,就意味着还处在测试阶段,尽管目前没有出现任何事故,但不能放任不管。

显然,自动驾驶将赋予智能汽车更多权利,也意味着汽车内外需要加装更多传感器、摄像头和监听器等。但不论哪种设备,都对汽车内部相对隐秘空间内的驾乘人员隐私造成了威胁。

是监视还是保护

这不是特斯拉第一次曝出信息安全丑闻。去年,一位白帽黑客格林曝光特斯拉的车载计算机系统可能会导致个人隐私的泄露。接触过特斯拉的人都知道,特斯拉的车载计算机系统功能繁多,包含收音机、蓝牙电话、上网、玩游戏等。驾乘人员还可以通过Wi-Fi连接社交网站,甚至能存储联系人的电话号码。

但很多车主没有想到的是,暗藏在车载计算机系统屏幕背后的组件,正成为隐私数据泄露的源头。这位白帽黑客从某购物平台上购买到被换下来的自动辅助驾驶系统(AP)和媒体控制单元(MCU)。尽管这些组件已经有明显损坏迹象,但仍能从中获得之前车主的隐私,例如手机连接的电话本、通话记录、日历、家庭和工作地点的定位、导航去过的位置,以及允许访问网站的会话cookies。

之所以可以从MCU上获取个人信息,是因为特斯拉基于Linux内核搭载MCU。MCU使用的是镁光生产的嵌入式多媒体控制器(eMMC)存储颗粒,而特斯拉的车机系统并没有对这块eMMC硬盘进行任何的加密处理。

不仅是特斯拉,蔚来汽车“监控每位车主行程”也曾在网上闹得沸沸扬扬。此外,滴滴打车也为了确保驾乘人员安全,采取全程监听车内人员对话的措施。

尽管这些安装监听、监视设备的生产方打着“向善”的旗号,却往往没有明确告知消费者他们将会被收集哪些信息;亦无人知晓,这些信息是否真的会被妥善安全地保存。

而在信息技术飞速发展的现代,将安全性让渡给驾乘人员的隐私真的可行吗?前段时间,货拉拉公司货车女乘客跳车一事余温未了。社会上不乏对货拉拉公司为何不在车内安装监控系统的质疑之声。

安全与隐私应如何兼顾?在福州大学数学与计算机学院教授陈德旺眼中,安全与隐私是互相矛盾的名词。“想要获得更多安全性,就需要让传感器采集更多的数据。”

法规不应缺席

“目前,智能汽车要协助驾驶员对车辆进行控制时,主要采集驾驶车周边的车及所在道路场景的实时数据,例如前后左右车的位置、类型、速度,交通标志、道路线、障碍物等。而实现无人驾驶,只需要对车外进行监控即可。”中国科学院自动化研究所研究员王飞跃在接受《中国科学报》采访时解释道,“监控车内主要是为了对驾驶员采取主动安全措施,即发现驾驶员出现疲劳驾驶、视线漂移、不系安全带等危险行为时,进行主动提醒。目前,尚没有对监控范围和清晰度有明确的统一标准。”

诚然,伴随着人工智能的发展,关于人工智能伦理的讨论从未停歇,但讨论主题却一直集中在讨论可能性和对未来影响的理论工作,而对人工智能实际应用的研究则探讨较少。因此,学术界对人工智能伦理道德的关系进行探讨虽已持续了数年,却并没有弄清普遍的人工智能伦理到底是什么。

“人工智能在当代广泛应用,带来了各种益处,但人们也发现了诸多伦理问题。直接与技术相关的,包括算法歧视、侵犯隐私等技术的误用和滥用等,较为间接和远期的则有就业问题、平等、家庭和社会关系的危机等。”中国人民大学法学院副教授郭锐告诉《中国科学报》。

就这点而言,智能汽车对隐私构成的威胁似乎并没有上升到这一高度。“从安全隐私角度以及自动驾驶及车内主动安全的技术实现上,采集的数据都是可以实时处理、实时做出自动驾驶行为,不需要保留任何数据的。这和现有车的倒车影像的逻辑是一样的。”王飞跃坦言,“但是,不排除部分厂商为了不断提升自动驾驶及主动安全的技术能力,以及识别能力,而保留部分数据,进行算法的再学习。如果能征得用户授权同意,未尝不可。”

陈德旺也建议,车企最好将车内安装设备与收集哪些信息标注清楚,让车主保留选择的权利。“有些车主认为汽车安全比隐私更重要,就可以选择让智能后台对其信息进行收集。也有车主认为车内是隐私空间,那么可以选择减少收集内容,或者适当关闭一些功能。”

对此,郭锐认为,人工智能的决策则必须按照人类的伦理来评估和校正;人工智能对社会的影响很大,牵涉很多的人,因此应当更加强调归责性。“就车内检测技术如何与隐私保护平衡的问题,我认为可以从两个维度进行考量。第一,应该遵循知情同意原则,采取‘事前告知’‘事后删除’的模式;第二,立法应对何时收集、收集到何种程度、保存期限多久等问题做出规定,并要求商业主体定期审核。”

人工智能的尺度

“人工智能技术确实存在两面性,在带来驾驶安全性提升的同时,如果不加限制,确实也会带来侵犯隐私的隐患。但是解决方案提供商以及车厂,很容易通过法律和标准来约束产品和服务的隐私程度。例如,最关键的是要求不能留存数据、不能定位,这就解决了绝大部分的隐私问题。”王飞跃表示。

目前,人工智能和自动驾驶业内有分布式(联邦)数据共享、多方(联邦)数据智能计算等技术,也取得了初步的进展,能达到“数据可用不可见”的效果。王飞跃解释说,从技术上来讲,这种模式所形成的算法,与将数据聚集在一起计算训练的效果相同或者相近,从而能比较好地平衡数据隐私版权保护、数据要素开放共享服务两者之间的矛盾。正因如此,预计“数据可用不可见”是数据应用服务的未来趋势。

郭锐也表示,智能汽车收集的数据传统上被看作隐私问题。实际上,这个问题和传统隐私权语境有所不同。不同之处在于,它不是一个一方侵权、另一方被侵权的零和游戏,还展现了车主和汽车企业之间通过合同彼此信任、合作的一面。因此,个人信息保护在这个问题上可能比隐私权保护更加切合实际。

而且,相较于智能汽车驾乘人员隐私问题,网络隐私暴露更值得关注。“在技术上,科学研究者和业界也在探索是否可以达到利用数据的同时保护隐私的效果。在治理上,我们还应该支持市场的自治,企业之间的互相竞争某种程度上能够促进用户隐私的保护。比如在搜索引擎的竞争上,一些搜索引擎会以推出更加保护隐私的服务吸引消费者。”郭锐说,其实,人工智能发展过程中遭遇的最根本的伦理难题是创造秩序危机。创造秩序危机,简而言之,是人所创造的技术对人的反噬。反思人工智能伦理,是为了应对这个危机。伦理不是为了约束科学发展,而是为了防止我们在追求某一个具体目标的时候伤害人类的整体利益。

人工智能遵循的四大基本道德

人工智能的发展,需要遵守的四个AI伦理原则:

第一个原则是安全可控是最高原则;

第二个是促进人类平等地获得技术和能力是创新愿景;

第三个则是人工智能的存在价值不是超越人、代替人,而是教人学习和成长;

第四个是人工智能的终极理想应该是带给我们更多的自由和可能。

世界上不只有大公司需要AI的技术和能力,几千万的组织都需要。防止技术的不平等,导致人们在生活、工作上的不平等,这是我们需要思考的。

什么是可信人工智能

可信人工智能

AI是具有颠覆性的技术,其改变世界的潜力是无限的。AI可以改善复杂的决策制订流程,这使其成为了各个行业转型的催化剂。除了可以更有效、更高效地完成繁重且费时的任务外,AI还可以赋予管理团队前所未有的深刻洞察。但与此同时,AI技术也会催生一系列道德、法律和技术风险,需要企业妥善处理。

33%的受访者认为员工信任是AI实施的最大障碍之一,即使受访者完全或一定程度上信任AI。除此之外,我们发现,技术、风险、人员能力和意识等都成为了人们信任AI实施的主要限制因素,尤其在技术方面,技术的可靠性和性能、技术的安全性和坚固性、技术治理与监督、AI应用相关的伦理道德问题都成为了关键因素。

现有的外部监管机构对AI的控制力度远远跟不上AI技术的发展速度。企业在没有强有力的治理下使用AI,会面临严重的风险。这些风险和威胁不仅复杂,还会随着AI技术的发展不断演变。为了确保AI的使用安全,我们提倡在最初的AI设计中就将信任原则嵌入。面对不断演变的威胁,越早将信任原则嵌入AI中,越能未雨绸缪,在确保AI隐私和安全的前提下收获最大的回报,使AI技术成为推动企业未来发展的强大动力。

对企业来说,AI既是管理风险的工具,也是产生新风险的来源,需要妥善管理。这些风险不仅会损害对这些系统的信任,还会损害对产品、品誉的信任。因此无论何时采用AI技术,企业都应该识别各项AI技术应用的风险。

安永的可信的人工智能框架,帮助企业了解新的和不断扩大的风险,企业可以根据他们在AI产业链中的角色和职责开展治理活动。安永的可信AI框架从性能、无偏、透明、韧性、可解释五个方面强调了维持信任所必备的属性。

要被用户接受,AI必须是可以被理解的,这意味着AI的决策框架需要可解释和验证。它还必须按预期运行,无偏见以及安全。

性能是指,AI的结果与利益相关者的期望一致,且其性能达到期望的精确度和一致性水平。

无偏是指,通过AI设计识别并解决由开发团队组成、数据和训练方法产生的固有偏见。AI系统的设计考虑所有受影响的利益相关者的需求,并对社会产生积极影响。

透明是指,给予与AI交互的最终用户适当的通知,以及选择交互程度的机会。根据采集和使用数据的要求,获取用户同意。

韧性是指,AI系统组件和算法本身使用的数据受到安全防护,避免未经授权的访问、损坏和/或对抗性攻击。

可解释是指,AI的训练方法和决策标准可以被理解和记录,并且可供人类操作者随时挑战和验证。

实际上,AI不是被实施,而是被应用,并且当AI应用在三步创新法中时,将可实现可信AI。所谓“三步创新法”为:有目的的设计、谨慎监督和敏捷治理。

有目的的设计是指,在设计和构建系统时有目的地整合并适当平衡自动的、智能的和自主的能力,以促进明确的定义业务目标的发展,并考虑环境、约束、准备程度和风险等。

谨慎监督是指,持续调整优化、关注和监控系统,以提高性能的可靠性,降低识别和纠正偏差,加强透明度和包容性。

敏捷治理是指,跟踪社会、监管、声誉和伦理领域暴露的问题,并报告给以下内容的流程负责人:系统完整性、系统使用、架构和内嵌组件、数据采购和管理、模型训练、监控。

斯坦福AI看脸即知性取向,人工智能还有哪些令人意想不到的能力?

各位研究AI的科学家们现在的脑洞越来越大了。先提几个目前正在研究训练中的“脑洞大开”版AI。

推理&找出真凶

爱丁堡大学的一个研究团队,把《CSI:犯罪现场调查》剧集脚本变成自然语言的训练数据集,输入一个LSTM模型。他们的目标是帮助机器更好的进行自然语言理解,以及训练与之相关的复杂推理能力。研究人员假设这个AI模型和人类一样,从剧集中获得一系列的信息输入,包括文本、视频或者音频,并能据此推测凶手。

亚马逊的不可描述操作

为了响应万千少男少女的呼声,亚马逊旗下的有声读物平台Audible推出一项“TakeMeToTheGoodPart”(带我去精彩片段)功能,用机器学习将读物快进到有声书中的羞羞部分。、

AI给你讲个鬼故事

MIT媒体实验室的研究人员公布了一个会写鬼故事的程序——Shelley,在Twitter上引发了网友狂热转发。这个AI程序Shelley经过Reddit上恐怖小说的训练,已经会写恐怖故事的开头了。

一大波AI水军即将袭来

《在线点评系统中的自动众包攻击和防御》是赵燕斌等芝加哥大学研究人员发布的一篇论文。他们的研究说明,人工智能可以被用来生成复杂的点评信息。这些虚假的点评不仅机器无法检测出来,就连人类读者也分辨不出来。

研究人员表示,AI生成的点评已经做到了“以假乱真”,有600个用户参与的调查显示,这些虚假的点评不仅能逃过人类的法眼,而且还被用户认为“有用”。

举个栗子:“我们全家都是这间餐厅的超级粉丝。工作人员非常奈斯,食物很棒。鸡肉非常好吃,蒜汁堪称完美。上面配有水果的冰淇淋也很美味。强烈推荐!”“这的食物好吃得惊人,分量也很大。芝士百吉饼做得非常完美,新鲜又美味!服务很快。毫无疑问是我们最爱的地方!我们还会回来的!”

好了,文章到这里就结束啦,如果本次分享的人工智能工程伦理道德和人工智能 伦理道德问题对您有所帮助,还望关注下本站哦!

人工智能工程伦理道德(人工智能 伦理道德)文档下载: PDF DOC TXT