大家好,今天小编来为大家解答以下的问题,关于人工智能分析结论,人工智能的结论这个很多人还不知道,现在让我们一起来看看吧!
本文目录
人工智能有情商吗?你怎么看?
当前作为最高级动物的人,尚且丢失了情,只余了商,何谈人工制造而成!客观讲,有科学头脑,又接受了高等教育,取得硕博学历,不为个人名利专心从事科技工作者,他们研制的人工智能会追随制造者,具备了情商!
关于人工智能两面性的名言
1.史蒂芬·霍金
全面化人工智能可能意味着人类的终结……机器可以自行启动,并且自动对自身进行重新设计,速率也会越来越快。受到漫长的生物进化历程的限制,人类无法与之竞争,终将被取代。
2.克劳德·香农
我设想在未来,我们可能就相当于机器人的宠物狗狗,到那时我也会支持机器人的。
3.拉里·佩奇
人工智能将是谷歌的最终版本。它将成为终极搜索引擎,可以理解网络上的一切信息。它会准确地理解你想要什么,给你你需要的东西。我们现在还远远没有做到这一点。然而,我们能够逐渐接近,我们目前正在为此努力。
4.ElonMusk
人工智能(我指的不是狭隘的AI)的发展速度之快令人难以置信。除非你对Deepmind这样的项目有直接的接触,否则你不知道它的发展速度有多快它以接近指数的速度发展。在未来5年的时间里,很有可能发生重大的危险事件。最长也在10年之内。
5.NickBilton
“人工智能带来的巨变将会迅速扩大,它将越来越可怕,甚至带来灾难性结果。”想象一下这样一幅场景一个原本是用来治疗癌症的医疗机器人最终得出这样的结论:消灭癌症最好的方法就是消灭那些基因里就易于受癌症攻击的人类。
6.JamesBarrat
我不想吓你,但我和很多人聊过,他们在人工智能领域都有很高的地位,但他们都准备了一些紧急方案,一旦发生不可控的事故,他们可以用这些方式退出。
7.埃隆·马斯克
我越来越倾向于认为,应该在国家和国际层面上进行监管,以确保我们不会做出非常愚蠢的事情。我的意思是说对于人工智能的研究就仿佛是在召唤一个恶魔。
8.格雷·斯科特
问题所在是,我们什么时候才能起草出一份人工智能法案?这一法案将包括什么?这将由谁来决定呢?
9.克劳斯·施瓦布
我们必须既团结一致又独立地解决由人工智能和生物技术前沿研究而带来的道德伦理问题,这将可以显著地延长人类寿命,增强记忆力并且对新生儿进行有益地影响。
10.吉尼·罗曼提
有些人把这种技术称之为“人工智能”,但实际情况是这种技术将增强我们人类的能力。因此,我认为,我们将增强人类的智能,而非“人工”的智能。
11.杰玛·伟兰
我对于人工智能的忧虑多于兴趣事实上这两种态度本身就相差不多。事情会在头脑中变得清晰,你会被欺骗,你会相信一些你平常不会相信的事情。一个由机器人来运作的世界似乎不再是完全不现实的幻想了。这有点令人不寒而栗。
12.格雷·斯科特
谈起人工智能就不得不谈谈“终结者”。我真的觉得这不现实。我不认为拥有了超人智能的人工智能系统会变得暴力。我不认为这将会破坏人类的文化。
13.彼得·戴曼迪斯
如果一国政府对无人机、干细胞或人工智能技术进行管制,禁止使用,那就意味着相关的研发和生产会转移到别的国家进行。
14.杰夫·霍金斯
人工智能的关键性问题是其表现形式。
15.科林·安格尔
观察全社会将如何对待人工智能技术将会很有趣,这一技术无疑会很酷。
16.埃利德·尤德考斯基
任何能带来优于人类智能的东西,(其形式可能为人工智能,人脑-计算机交互界面,基于神经科学的人类智能提升),都会在改变世界的竞赛中占据领先地位。再没有什么能与此相提并论。
17.黛安·艾克曼
人工智能正在快速成长,机器人亦如此,它们的面部表情可以激起人们的同感,让你的镜像神经元产生震颤。
18.SybilSage
电视中,人们只要叫一声Alexa,她就亮了起来。她总是处于待命状态,永远不会说,“不行……”简直是完美的女人。
19.艾伦·凯
有些人担心人工智能会让人类觉得自卑,但是实际上,即使是看到一朵花,我们也应该或多或少感到一些自愧不如。
20.雷蒙德·库茨魏尔
人工智能将在2029年左右达到人类智力的水平。再进一步,比如说,到2045年,我们将会把智能技术,人类文明所创造的生物机器智能的能力扩大10亿倍。
21.塞巴斯蒂安·特伦
虽然没有人这样说,但我认为人工智能几乎是一门人文学科。这是一种试图理解人类智力和人类认知的尝试。
22.艾伦·佩利
在人工智能上花一年时间,这足以让人相信上帝的存在。
23.格雷·斯科特
到2035年,人类的思维不可能,也不应该可以继续跟上人工智能机器的步伐了。
24.斯派克·琼斯
人工智能不如我们的智力吗?
25.EliezerYudkowsky
目前为止关于人工智能的最大的问题在于,人们过早地得出结论,认为他们真正理解这一技术。
26.让·鲍德里亚
人工智能的可悲之处在于它不够巧妙,因而不够智能。
27.汤姆·查特菲尔德
忘记人工智能吧在大数据的勇敢新世界里,我们的首要工作是找出那些“人工智障”。
28.史蒂夫·波里亚克
在我们研究人工智能之前,我们为什么不做一些关于自然存在的愚蠢行为的研究呢?
机器学习不断接近人脑水平,人工智能近来的发展如何?
人工智能发展的道路上不会少了生命科学的参与,没有生命的人工智能还是没有感情和温度的机械零件的堆砌
人工智能需要有大数据支撑,人工智能与大数据究竟是怎样结合的?
图片来自“123rf.com.cn”
大数据和人工智能工具的结合可以实现新的分析和自动化形式,而在企业应用程序中,这些技术仍在不断发展和演变。
Dun&Bradstreet公司今年1月发布了一项调查结果,调查发现,40%的受访者表示部署人工智能技术增加了更多的工作岗位。这一发现似乎与采用人工智能将减少就业机会的担忧相反,而在调查中,100名受访者中只有8人表示,他们的组织由于采用人工智能而裁员。
这是Dun&Bradstreet公司的调查团队于去年12月在波士顿的人工智能世界会议和博览会上对与会者进行的调查,这就提出了一个问题,即企业将如何适应人工智能和大数据等新兴技术,尤其是处在这个前所未有的数字化颠覆时代。
企业领导者面临数字化颠覆的现实,发现即使在人工智能上采用快速跟随策略也很难应对。迅速发展的技术以及人工智能对未来工作的影响,将导致工作岗位的变化和知识型员工难以保留等迫在眉睫的问题。
采用人工智能的好处以及带来的问题Dun&Bradstreet公司的调查发现,人工智能主要用于分析、自动化和数据管理。正在启用新功能,使原本不可访问的域更容易访问。例如,大学教授现在可以使用一系列工具来检测作弊行为,这曾经是一个人工检验和基于经验的繁琐过程。在人力资源部门,也采用了能够筛选简历、预测应聘者是否合格成功的技术,以及执行许多其他任务的技术,这些任务曾经被认为难以处理。
不仅仅是人工智能功能使这些应用程序更加可行,它也是对业务任务的重新构想,以利用现有数据并开辟新的思维方式。与此同时,不断变化的隐私法规使企业和网络犯罪分子以惊人的新方式使用先进的技术,这迫使企业采用更多资源处理与数据安全和治理相关的问题。
当今的业务环境越来越复杂,很难应对这种混乱。随着第二代数字原生代的兴起,需要对不断增长的人工智能和大数据的应用进行探索和研究。
根据Dun&Bradstreet公司的调查,人工智能技术目前在大多数组织中都有一定程度的使用。这一发现与其他行业机构的研究是一致的,这些研究指出,人工智能技术已从认识和早期采用过渡到全面实施,并从使用中创造了附加业务价值。
现实情况是,许多人工智能应用程序,特别是那些需要丰富的稳定数据集合得出结论的人工智能应用程序,一直受到数据发现和管理的复杂性的困扰。然而,随着大数据技术的发展,使组织能够保持和管理越来越多的数据,利用物联网和移动网络等新技术的新应用开始产生有希望的结果。其中一些例子包括执法中的面部识别、智慧城市技术、自动驾驶汽车和无人机等。
谁在采用企业人工智能并在做什么?对人工智能从业者的调查通常包括三类:已经成功部署人工智能应用程序的人员;正在部署人工智能项目,但仍在创新和投资回报率之间寻求平衡的人员;仍在探索人工智能技术或尚未对企业中的人工智能做出认真承诺的人员。而关于这三个群体的相对规模存在重大争议。
Dun&Bradstreet公司的调查是在一次以人工智能为重点的活动中进行的,近半数受访者(44%)表示他们的公司正在部署该技术,而20%的受访者表示其公司已经部署人工智能技术。23%的人表示,正在计划实施。
寻求采用人工智能技术解决复杂问题的企业有时会感到有点困惑,对其结果不满意,这表明存在一些可解释性问题。如果人工智能方法没有得到很好的理解,那么他们很难接受看似违反直觉的结果。这一点在Dun&Bradstreet公司的调查结果中比较突出,46%的受访者表示,理解人工智能如何得出结论是他们组织面临的一个问题。只有三分之一的人表示,他们完全理解他们的人工智能系统是如何得出结论的。
对人工智能结果不满意的其他一些原因来自于基本问题的制定。例如,由人类训练的监督人工智能方法存在基于潜在误导性强化现有知识做出决策的风险,特别是在没有提前采取正确步骤来解决偏差的情况下——在数据、算法本身或在他们产生的结果的解释中。
问题制定依赖于数据科学家确保使用正确方法和数据的能力,并要求正确的问题支持得出的结论。问题制定不完整的风险强调需要有可解释的人工智能和更多关于思想和方法多样性的对话,以便技术对企业更有价值。
人工智能和大数据的正确组合仔细考虑人工智能使用的数据同样重要。在Dun&Bradstreet的调查中,很多组织表示,缺乏正确的数据是进一步实施人工智能的最大障碍之一,28%的受访者认为缺乏内部专业知识也是一个主要障碍。
随着数据的生产和存储量呈指数级增长,人们将开始看到人工智能系统的适应和改进。
虽然人工智能从业者可能对数据量有合理的处理,但大数据环境中的变化速度仍然是某些人工智能应用程序的重要问题。流媒体数据是数据样本经常被忽视的一个很好的例子。
数据准确性是另一个越来越重要的问题,特别是对于分类方法和其他无监督的人工智能方法。数据是必须建立任何技术(尤其是人工智能)的基础。错误的数据基础(例如使用包含偏差或被错误操作的数据)通常会导致错误的技术方法产生错误的见解,而且可以通过压力以消极的方式得到强化。
人工智能的发展对其商业价值至关重要但是,随着数据的持续生成和存储量呈指数增长,人们将开始看到人工智能系统的适应和改进。这种演变是人工智能的商业价值所固有的特征。正如人工智能技术在某种程度上具有自我诊断的能力一样,人们将开始看到出现复杂的系统,这些系统不仅可以从人类代理那里学习,而且还可以从经验中学习——其很好的例子包括对抗人工智能和集成方法。
此外,下一代数字原生代的人工智能和数据科学从业者将更加细致地对系统进行观察。这些未来的数据科学家将进行鉴别诊断,就像医生一样,可以区分具有相似症状的疾病。
人工智能和大数据的结合将继续发展,组织可以确保继续增加对该技术的实验和部署。然而无法保证这种演变将朝着积极的方向发展。事实上,一些伟大的预言得出的结论却恰恰相反。
数字颠覆的新科学与商业和人工智能的发展息息相关。似乎可以肯定的是,这种进化的速度将继续增加。事实上,人工智能和大数据并不总是完美地结合在一起。在这一领域,最终会产生最佳结果的是不同分析方法和思维的日益成熟。
关于人工智能分析结论的内容到此结束,希望对大家有所帮助。