弱人工智能形态 弱人工智能阶段

大家好,弱人工智能形态相信很多的网友都不是很明白,包括弱人工智能阶段也是一样,不过没有关系,接下来就来为大家分享关于弱人工智能形态和弱人工智能阶段的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!

本文目录

  1. 自动化专业和人工智能有区别吗?
  2. AI是什么,人工智能的简称吗?
  3. 人工智能真的有用吗?
  4. 人工智能的深度学习是什么意思?好学么?

自动化专业和人工智能有区别吗?

很高兴能回答您这个问题,以下我为大家分享,我个人对这个问题的看法与想法,希望我的分享能给大家带来帮助,也希望大家能够喜欢我的分享。

对于自动化专业和人工智能的区别来说,从严格的定义来看,似乎两者并不是一个层面的比较。我们先来看看自动化专业的定义,引用下百度百科的定义:

自动化专业以系统科学、控制科学、信息科学等新兴横断学科为理论基础,以电工技术、电子技术、传感技术、计算机技术、网络技术等先进技术为主要技术手段,以实现各类运动体的运动控制、各类生产过程的过程控制、各类系统的最优化等跨学科综合性专业。自动化专业的一级学科为“控制科学与工程”,本专业主要有4个发展方向:1、运动控制;2、过程控制;3、嵌入式系统与机器人;4、人工智能。[2]培养掌握自动控制、计算机软硬件、人工智能和机器人领域相关知识,能够在自动化及相关领域从事系统设计、产品开发、科学研究和技术管理等工作,能解决复杂工程问题工程应用技术型人才。

以上可以看出,人工智能只是自动化专业的一个发展方向而已,是属于自动化的一个范畴。不过由于当前人工智能技术的火热,我们有必要对传统的自动化技术和人工智能技术做些比较。

传统自动化技术

对于传统自动化技术是指机器设备、系统或生产、管理过程在没有人或较少人的直接参与下,按照人的要求,经过自动检测、信息处理、分析判断、操纵控制,实现重复性的复现和执行预期的目标的过程。其中一个重要的特征就是整个自动化过程完全预先由工程人员设定好,机器只是按照设定的程序严格执行而已。比如自动化流水线就是一种典型的预设定系统。

人工智能技术

人工智能可以说是当前科技界最火热的技术了,其实人工智能的概念在几十年前就已经提出,但由于当时计算机计算能力的受限,发展一直停滞不前。但随着现代计算机计算能力的提升,尤其是大规模云计算的出现,人工智能技术出现飞速发展。阿尔法机器人战胜人类顶尖围棋选手成为人工智能正式登上舞台的标志。

目前越来越多的传统自动化技术开始与人工智能技术进行整合,形成了一种叫智能制造的概念。与传统自动化相比,其中的重要区别就在于出现了机器学习的概念,这主要体现在整个自动化过程不再完全由人类进行预先设定,而是让机器进行大量的数据学习,自动调整自动化参数,从而智能的进行工作。例如一条智能化的生产线的产品质量检测关口,摄像头视觉识别系统通过过去对各种产品缺陷的视觉特征的学习,能自行设置缺陷模型,从而识别质量不合格的产品,这就是一种典型的人工智能在自动化技术的应用。

总结一下,传统自动化技术与人工智能技术之间的重要区别就在于是否融入了机器学习的概念,自动化生产的过程不再完全通过人类的预先设定完成,而是由智能机器学习算法通过学习而去自动完成。

在以上的分享关于这个问题的解答都是个人的意见与建议,我希望我分享的这个问题的解答能够帮助到大家。

AI是什么,人工智能的简称吗?

因为我自己是学软件的,所以可能对AI比较熟悉一点,AI是人工智能的简称,许多人喜欢把AI理解为机器人,其实这样是不准确的。我们可以把人工智能拆开来解释为“人工”和“智能”,简单来讲就是由我们人类创造出来的智能。换句话说,只要是人类创造出来的,能提高人类的生产生活的效率,降低重复性操作,或者能够代替人类工作的都可以称作AI(人工智能)

人工智能真的有用吗?

人工智能作为新生事物解决了很多之前解决不了的问题,必然是好的,但是目前媒体把它过度神话了!

首先,目前的人工智能根本上只是个算法,依靠更多的有标记数据和更快的计算速度完成了以前完成不了的计算量。由于算力的惊人,可以找到人们之前未曾发现的特征与规律。但是目前的算法很大程度上还是暴力运算,发现的很多规律,特征都是过度拟合的结果,是无效的。因此真正的智能还远远未到!现在还是可以轻易驾驭

人工智能的深度学习是什么意思?好学么?

我们来一起梳理一下人工智能与深度学习的关系。

人工智能

首先,大家所谈论的人工智能可以分为两个层面:“强人工智能”和“弱人工智能”。其中:

弱人工智能

希望借鉴人类的智能行为,研制出更好的工具以减轻人类智力劳动,类似于“高级仿生学”。

强人工智能

希望研制出达到甚至超越人类智慧水平的人造物,具有心智和意识、能根据自己的意图开展行动,可谓“人造智能”。

AI技术现在所取得的进展和成功,是缘于“弱人工智能”而不是“强人工智能”的研究。要想让AI借鉴人类的智能行为,关键的一个环节是让AI模拟人类的学习行为。

所以,这里面有个非常关键的技术,叫做机器学习。

机器学习

机器学习是专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。机器学习是人工智能的核心,是使计算机具有智能的根本途径,其应用遍及人工智能的各个领域,它主要使用归纳、综合而不是演绎。

目前的机器学习可以分为三大类:

(1)有监督的学习

数据具备特征(features)和预测目标(labels),又分为:

a.二元分类

简单粗暴地理解,即让AI做是非题

b.多元分类

可以理解为,让AI做选择题

c.回归分析

可以理解为,让AI做计算题

(2)无监督的学习

从现有数据并不知道预测的答案,无预测目标(labels)。

(3)强化学习

通过定义的动作、状态和奖励不断训练,使其学会某种能力。

机器学习有一个很有意思的技术,叫做人工神经网络。

人工神经网络(ANN:ArtificialNeuralNetwork)是一种模拟人脑神经网络以期能够实现类人工智能的机器学习技术。它可实现函数逼近、数据聚类、模式分类、优化计算等功能。因此,神经网络广泛应用于人工智能、自动控制、机器人、统计学等领域的信息处理中。

通过这两张图的对比,我们可以看到,机器学习中的人工神经网络很好地借鉴了人类神经网络的特点,是一种非常有意思的仿真。

深度学习

而深度学习是一种特殊的机器学习,是机器学习研究中的一个新领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

深度学习能直接对大量数据进行表征学习,来替代手工获取特征。深度学习与传统机器学习最主要的区别在于:随着数据规模的增加其性能也不断增长。引发深度学习热潮的一个标志性事件是:2016年3月,AlphaGo(谷歌旗下DeepMind研发)击败了李世石九段。

相应的,深度学习有一个非常重要的技术,叫做卷积神经网络。

卷积神经网络(ConvolutionalNeuralNetwork,CNN)是一种典型的深度神经网络,它避免了对图像的复杂前期预处理,可以直接输入原始图像,因而得到了更为广泛的应用。

总结

最后,我们用一张图来梳理一下人工智能、机器学习、深度学习的关系:

关于弱人工智能形态的内容到此结束,希望对大家有所帮助。

弱人工智能形态 弱人工智能阶段文档下载: PDF DOC TXT