文字理解的人工智能 文字理解的人工智能是指

大家好,今天小编来为大家解答文字理解的人工智能这个问题,文字理解的人工智能是指很多人还不知道,现在让我们一起来看看吧!

本文目录

  1. 人工智能、机器学习、深度学习的关系是什么?
  2. AI人工智能技术是通过怎样的方式实现人脸识别和图片识别的?
  3. 自动化和人工智能的区别
  4. 人工智能在工业机器人方面有哪些应用?

人工智能、机器学习、深度学习的关系是什么?

深度学习是实现机器人学习的一种方式,机器学习是实现人工智能的一种方式。

这三者属于一个从属的关系。

下面详细解释一下:深度学习,机器学习,人工智能的各类概念。

1、深度学习:相当于一种处理信息的方式。

这上面的三个概念,在理解的时候,最好类比一下人类的思维习惯。然后就好理解这些模型和架构。

外部信息输入进来之后——机器人通过什么处理方式进行梳理这部分数据,并且能够根据这个梳理完的数据,留存下载的信息,建立新的索引基础。

这就是深度学习的表面含义。

说通俗点就是:我们在教育孩子的时候,第一次告诉他,桌子上的是碗,头顶的是灯。最开始小朋友学会了,只知道这这两个东西。后来他开始类比,只要是发光的,他都叫电灯。只要是白色的放桌上都叫碗。

这种举一反三是非常合适的,这其实就属于深度学习中的数据处理单元。

大部分人喜欢用这张图来说明,深度学习。

这么说吧,就这张图,可以说一本书的深度学习知识。咱们普通朋友,根本听不懂。换一张图解释一下深度学习。

这么解释一下或许更好一些:

1、当你有人第一次告诉你,桌子上的东西叫碗。你会形成一个向上的认知:碗是白色,可以盛饭,凹进去的。

2、你闭上眼,不去看那个碗。你在大脑中,怎么描述碗?

那就是一个反过来的过程:白色的,盛饭的,凹进去的就是碗。你以后看到这种东西,第一时间不管对不对,理论上都应该说这是“碗”。

3、伴随着时间的推移,你不见过了各式各样的碗,有青花瓷的,有玻璃的,有铁的等等。最后你形成了一个标签,凹进去,器皿。都可以叫碗。

这就是一个比较简单深层学习过程。当然计算机实现起来,比我说的要复杂的多。那毕竟是一门学问,不是一篇文章。

所以深度学习,跟以前的神经网络学习,建模分析等等都是机器处理数据的一种方法,可以说是机器人的思路。

机器学习是机器人掌握的各种思考方式的总和

这里举一个例子:有不少家长问一些考过高考的学生,如何学习知识的,有没有经验,给我们推荐一下。

有的学生说:要勤做笔记,多学会归纳总结。

有的学生说:我不做笔记,太浪费时间,我喜欢举一反三,自己可以从一个知识点发散发所有的知识点。

有的学生说:我就是笨方法,就是大量的刷题,熟能生巧。

这就是人类的学习方式!

机器人的学习方式也一样:深度学习是一种,依赖大量数据各类总结的专家系统是一种。依靠神经网络,慢慢的学习进化,从基础开始学的机器人也是一种学习方式。

如果这个机器人,很强,他什么学习方式都可以掌握。并且可以随时切换,采用最好的方式。

甚至可以实现联想!

人工智能是机器人学成之后,能够跟人类交互,人类能够看到的表象

这就好像是,一个孩子成人了,成人之间交流,大家都说:嗯,这个小伙子成才了,很会为人处世——这就实现了学成之后的智能化。

什么叫没成?就是一点为人处事都不懂,甚至不能自理的那种人,就属于“非智能”的状态。

正常来说,只要机器学习合理,并且完善,最终一定能够实现人工智能。只是时间早晚的问题。

AI人工智能技术是通过怎样的方式实现人脸识别和图片识别的?

用通俗的话总的来说,就是利用大数据抽取规律,再利用规律去预测(回归)、分类、聚类未知的输入,得到输出(结果)。

单说图片识别:

这里面的大数据就是已知的输入(图片)和已知的结果(图片的标签),抽取规律也就是相应的算法(卷及神经网络),预测、分类、聚类就是得到图片的结果(图片识别)。

可以分为以下几步:

第一步:数据的预处理。

图片是由一个一个的像素组成的,就拿入门的案例说吧,MNIST数据集,是一个手写数字的数据集,每一张图片都是由28×28个像素点形成的。

就像这样:

总共有60000张这样的图片,而图片的标签(也就是结果)也是已知的(0~9),那么设输入为x输出为y,

计算机是无法读懂图片的,所以我们要将图片转换成计算机所能认识的东东。

矩阵:

x就是一个28×28的矩阵每一个点表示图片中相应位置的灰度。有的神经网络为了更简化的计算,将28×28的矩阵,转换为一个1×784的向量(一维矩阵)。这里的x是28×28×1,这个1表示的是单通道,也就是只有一种颜色。如果是彩色图片的话,那么就应该是28×28×3,这个3表示的是RGB三个颜色通道。

y就是一个数字,0~9。

有些算法还会降x,y进行归一化,也就是转换为0~1之间的矩阵、数字。

第二步:抽取特征。

卷积(特征提取)的具体计算方法:

其中input为输入,filter叫做卷积核(暂且理解为滤波器),output叫做特征图,特征图的个数和filter的个数是相同的(filterW0、filterW1)。既然是矩阵,那么可以设中间的参数是W,于是就有Wx+b=output。这里的W是我们最终要训练出来的。

计算方法:

w0与x蓝色区域做内积(对应位置相乘后相加):

f1第1层=0×1+0×1+0×1+0×-1+1×-1+1×0+0×-1+1×1+1×0=0

f1第2层=0×-1+0×-1+0×1+0×-1+0×1+1×0+0×-1+2×1+2×0=2

f1第3层=0×1+0×0+0×-1+0×0+2×0+2×0+0×1+0×-1+0×-1+=0

那么根据神经网络得分函数:f(x,w)=wx+b

这里的b=1

那么输出的得分值就为f1+f2+f3+b=0+2+0+1=3

最右边绿色的矩阵第1行,第1列,就是3

将卷积核在输入矩阵滑动,

同理可以计算

这里的输出叫做特征图。

这里就可以看出,经过卷积核Filter(滤波器),将图片浓缩了,浓缩之后,再进行一次非线性的处理,用一些非线性的函数将线性结果非线性化(叫做激活函数),这层叫作卷积层。

这里只是一层,大型数据集(输入很多的情况)一层是不够的,需要很多层,输入-卷积-输出-卷积-输出........。

比如VGG-16,就有16个卷积层。

进一步浓缩叫做池化层。

同样有一个filter,将特征图进行MAX(取最大值)或者MEAN(取均值),进一步浓缩特征。

浓缩完特征之后,接着后面的层叫做全连接层。

就是将权重参数W(矩阵),分别乘以池化完成的结果,得到最终的分类结果比如前边所说的0~9的手写字体,要分10个类别,如果池化完成的结果是1×64,那么全连接层就应该是64×10,最终得到1×10的矩阵,就是分类0~9的结果。

以上最重要的就是要求W,也就是最前边说的,根据大数据找规律。

第三步:参数更新

那么还有问题,W是多少谁知道?

没人知道,这里是根据计算机一步一步的试出来的,

先随机的给出一组W,算出结果Y1,利用已知的x当做输入,用已知的y与y1坐差值,那么Y1-y就会有一个差值,就是预测值和真实值的差值。称作损失函数,有些叫做代价函数。当代价函数最小的时候,预测值Y1和真实值y的差距越来越小,当差距在我们可以接受的范围内,那么就可以认为,由权重参数W生成的Y1可以对输入x进行预测和分类。

那么如何让损失函数最小呢?这里并不是求导后求极值点,而是对损失函数求导数,调整W,使得差值沿着导数的方向前进,最终达到极小值点。

这时候得到的W就是我们最终要的结果了。

第四步:利用参数

既然得到了W,我们就可以利用这个W,将一个未知结果的x输入,从而得到通过W计算出的y,这个y就是图片识别的结果。

现在有很多的开源深度学习框架,是各大著名公司封装好的函数(已经造好的轮子),

以下是一个卷积神经网络识别MNIST的小例子(基于google深度学习框架TensorFlow):

只是经过了21次的参数更新,最终的识别准确率在99%以上。

输出结果:

ExtractingMNIST_data/train-images-idx3-ubyte.gz

ExtractingMNIST_data/train-labels-idx1-ubyte.gz

ExtractingMNIST_data/t10k-images-idx3-ubyte.gz

ExtractingMNIST_data/t10k-labels-idx1-ubyte.gz

第0次迭代,测试集准确率是0.7688

第1次迭代,测试集准确率是0.7831

第2次迭代,测试集准确率是0.8829

第3次迭代,测试集准确率是0.8883

第4次迭代,测试集准确率是0.889

第5次迭代,测试集准确率是0.8919

第6次迭代,测试集准确率是0.8908

第7次迭代,测试集准确率是0.893

第8次迭代,测试集准确率是0.894

第9次迭代,测试集准确率是0.8949

第10次迭代,测试集准确率是0.8927

第11次迭代,测试集准确率是0.8935

第12次迭代,测试集准确率是0.8948

第13次迭代,测试集准确率是0.9873

第14次迭代,测试集准确率是0.9881

第15次迭代,测试集准确率是0.9864

第16次迭代,测试集准确率是0.9885

第17次迭代,测试集准确率是0.9906

第18次迭代,测试集准确率是0.9876

第19次迭代,测试集准确率是0.9884

第20次迭代,测试集准确率是0.9902

自动化和人工智能的区别

自动化属于基础学科,人工智能技术是其中一个分支。

自动化通俗的白话定义是最高级的机械化和电气化,即是机器、设备和仪器能全部自动地按规定的要求和既定的程序进行生产,人只需要确定控制的要求和程序,不用直接操作。

人工智能即是对人的意识、思维的信息过程的模拟,即按照人的思维进行自动操作。人工智能不是人的智能,但能像人那样思考、也可能超过人的智能。

拓展资料:

自动化属于一门基础性学科,

从学科方向上而言,包含三大类,分别是:

1、工业过程控制方向:以自动控制、计算机技术为支撑,针对实际工业生产过程实现自动控制,由信号检测与变换、过程控制、计算机控制系统、智能控制和现场总路线控制技术等组成方向主干课。

2.、电气工程方向:使学生能够从事电力系统自动化、工厂企业、楼宇系统的供电和电气控制、监控等领域的设计开发、维护和管理工作。由电气控制技术、运动控制、PLC应用技术、供电技术、电力系统继电保护等组成方向主干课。

3.、嵌入系统方向:注重对嵌入式系统设计与软件设计能力的培养,理论结合实践,通过课堂教学、实验等多种形式的学习,培养嵌入式系统方向的专业人才;由嵌入式系统设计、嵌入式实时操作系统、DSP技术、先进显示技术、控制电机等组成方向主干课。

从自动基础学科涉及的专业影响而言:

从深度来看--以工业生产为例,小到一个普通的设备电机,大到企业的整个加工、制造系统乃至企业的整个生产过程都属于自动化。

从广度来看--涉及第二产业工业自动化、第一产业农业自动化、第三产业服务自动化(如办公自动化、楼宇自动化、商务自动化、交通自动化等等),涉及的系统可有人造系统(如机器系统、交通系统、电力系统、军事系统)和自然系统(如生命系统、生态系统),涉及的过程有生产过程、管理过程、决策过程等等。

“人工智能”一词最初是在1956年Dartmouth学会上提出的。从那以后,研究者们发展了众多理论和原理,人工智能的概念也随之扩展。

人工智能(ArtificialIntelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。人工智能企图了解智能的实质,并生产出一种新的能以人类智能相似的方式做出反应的智能机器,该领域的研究包括机器人、语言识别、图像识别、自然语言处理和专家系统等。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。

也有一种说法,将人工智能归结到计算机技术,认为人工智能是计算机技术的一种衍生方向。

人工智能在工业机器人方面有哪些应用?

人工智能顾名思义,就是利用机器去模仿一些人的思路和智力,去做人一直做的一些东西,也可以看成一种升级版本的自动化技术,自动化技术在工业上一直都在研究如何用机器取代人做事情,从这个角度而言,人工智能当然是前景乐观,毕竟人越来越懒,不愿意做生产了,人工智能工业机器人,实际就是控制算法稍微复杂点的机械手。

关于文字理解的人工智能到此分享完毕,希望能帮助到您。

文字理解的人工智能 文字理解的人工智能是指文档下载: PDF DOC TXT