揭开人工智能的神秘面纱(揭开人工智能的神秘面纱教案)

Bitget下载

注册下载Bitget下载,邀请好友,即有机会赢取 3,000 USDT

APP下载   官网注册

大家好,今天小编来为大家解答揭开人工智能的神秘面纱这个问题,揭开人工智能的神秘面纱教案很多人还不知道,现在让我们一起来看看吧!

本文目录

  1. 人工智能技术和大数据是如何联系在一起的?
  2. 大数据和人工智能有什么关联?
  3. 人工智能,云端,终端。三者有什么关系?
  4. 在A股里,真正的人工智能龙头除了科大讯飞,还有哪几个?

人工智能技术和大数据是如何联系在一起的?

在我看来,大数据和人工智能的关系,好比汽油和汽车的关系,要想汽车正常运转行驶,汽油是必不可少的东西。大数据就是人工智能的基石。人工智能技术发展,要解决特定领域的实际问题,需要不断输入大数据,在通过深度学习,在这些数据中发现规律、特点,然后建立模型,在不断的学习中优化模型,来处理新的数据。比如谷歌公司AlphaGo,它之所以能够站在围棋界巅峰,就是因为它通过学习上百万的棋谱,而且通过自己与自己对弈,来不断修正自己的算法,提高自己的“棋艺”。海量棋谱就是阿尔法狗的大数据,基于这些数据,通过深度学习,才成为了围棋界“王者”。

谈到大数据,深度学习也是不得不提的一个词语,只有二者同时具备,人工智能才得以高速发展。人工智能时代,深度学习和大数据是密不可分的。大数据好比人类食物,主要给人类供给营养,让人体正常运转。深度学习可以从大数据中挖掘有价值的规律、知识。简单来说,有庞大的数据输入,深度学习会最大化的发挥其优势,计算机不仅可以学会只有人可以理解的概念、知识,而且会运用到未知的数据上。好比图像识别系统,计算机通过识别海量人脸,来寻找人脸特征,之后,图像识别系统会根据之前所学“知识”,来判断从未见过的人脸,从而在特定领域来解决实际问题。

总而言之,没有大数据就不会有人工智能今天的高速发展。只有海量数据被输入,才能更好的发展人工智能,大数据和深度学习、人工智能唇齿相依,缺一不可。只有大数据,而不会学习利用这些数据,数据毫无价值。

我是境梦飞沙,人工智能学习者,期待与您相遇。

大数据和人工智能有什么关联?

第一层——两化融合

内容:

自动化——制造设备具备一定自动化能力,可实时产生生产制造的过程数据。

信息化——信息化主要指企业具备信息化能力,至少已经实施如ERP、MES、APS、WMS、SCM等传统软件,

物联网——具备RIFD、环境传感器等感知元件,可产生设备物联、物料物联、环境信息等。

作用:数据源

关键词:多源异构数据

第二层——信息通路

内容:

内部通路——打通企业内部网络数据通路,有条件可建立数据仓库或大数据中心。

外部通路——与互网联信息关联,通过爬虫或第三方数据服务获取商业舆情、用户画像等信息。

安全性——即在安全的基础上实现信息互通,尤其是内外部互通时,信息安全直接影响生产经营,甚至影响企业的竞争力。

作用:数据通道

关键词:消除信息孤岛

第三层——大数据

内容:

分布式集群——最著名的当属Hadoop生态圈,地球人都知道。

多源异构数据处理——多源是指企业需具备广泛数据来源,多源同时意味着较大数据量,传统IT架构处理千万级数据已经很困难了,要么牺牲时间要么牺牲硬件,而在大数据的分布式集群架构下,亿级数据秒处理只是入门门槛;异构是指要处理结构化数据、半结构化数据、非结构化数据,在传统的关系型数据库架构下,非结构化数据的处理采用对象存储,很难做到全文检索,而大数据架构下非结构化数据直接处理的模式多变灵活,且可与结构化数据进行关联分析。

数据运营——数据运营的概念在传统软件产品的世界中几乎是不存在的,以往软件提供特定功能,用户使用其功能。而在大数据的世界里,如果把数据比作钻石矿,大数据平台提供数据采集能力,数据就被开采;平台提供处理能力,数据矿就被提炼;平台提供配套运营体系,数据矿就变成了光彩夺目价值连城的首饰。数据运营能力决定了数据的价值,同时是不同的数据也是不同的矿藏,挖掘开采方式也不同,地貌也不同,因此配套解决方案也不应一套方法放之四海而皆准。

作用:数据探索

关键词:4个V(高速、高价值、大数据量、多样性)

第四层——人工智能

内容:

机器学习——分为有监督学习和无监督学习两种,当下最火的自然就是借AlphaGo扬名立万的深度学习领域了。

算法模型——构建数学算法模型,为企业应用场景提供支撑。可以是古老的贝叶斯,也可以是神经网络、灰度预测、随机森林等,原则就是算法为应用场景服务。

智能决策

作用:自学习能力参与决策、生产经营

关键词:自学习——只有具备自学习能力,才称得上人工智能,才具备了模拟人脑的能力,才能做我们的制造能力具备了大脑,才能称得上智能制造。

人工智能,云端,终端。三者有什么关系?

感谢邀请。

简单谈下个人的想法:

人工智能应该是分为云端和终端。云端就像是人的大脑,指挥着智能硬件的行动;而终端就是云端大脑指令的执行者。

智能终端生活中实在是太常见了,就像你问题说的一样,无人驾驶的汽车、智能手机等智能终端仅能解决一部分问题,但是还有很多场景问题是无法解决的。

为什么无法解决呢?

计算能力不够!这也就是为什么需要有云端。

因为如果要制造运算能力达到人类智力的机器人,需要一个体积相当于人脑100万倍的机器人大脑。这样大的机器人大脑与身体根本无法匹配,只能放在云端。

就像我们(保利威视)做视频云服务针对的是视频的托管服务,也需要通过云端强大的计算能力,以及稳定的网络来保障了用户观看视频的体验。

如果说未来真的能制造出体积小、而计算能力又超级牛逼的人工大脑,那么人工智能就真的不需要云端。但是以目前的计算能力是达不到的,所以才需要有云端。

但是云端和终端的连接也需要稳定的网络来实现,所以个人认为:

人工智能=云端+网络+终端。

在A股里,真正的人工智能龙头除了科大讯飞,还有哪几个?

老牌的AI范围相对要窄些,基本集中在机器人、图像识别、汽车驾驶、语音识别、自动设计等领域,那时的AI企业大都集中在高校、智慧城市、智能医疗、自动控制类企业。比如科大讯飞、川大智胜、海康威视、东方网力等都是老牌的帝国主义。

alphago之后,AI的最大改变是大数据的应用,这使得AI范围迅速扩大,扩展到了商业、环保、制造。。。几乎所有的企业。此时再分AI就比较困难了,目前领头的企业倡导的火热方向是自动驾驶、医疗、环保、交通等领域。

科大讯飞的语音处理很有名,川大智胜的图像处理很有名,海康威视的图像处理应用非常好,不过,更重要的还是股东的实力和业绩形象,AI的号召力很快就会枯竭,街上摊煎饼的都可以根据AI算法来提前备货。

好了,文章到此结束,希望可以帮助到大家。

揭开人工智能的神秘面纱(揭开人工智能的神秘面纱教案)文档下载: PDF DOC TXT