德州扑克人工智能测试(为什么顶级围棋选手还可以和人工智能平分秋色而象棋选手却不能?)

Bitget下载

注册下载Bitget下载,邀请好友,即有机会赢取 3,000 USDT

APP下载   官网注册

大家好,德州扑克人工智能测试相信很多的网友都不是很明白,包括为什么顶级围棋选手还可以和人工智能平分秋色而象棋选手却不能?也是一样,不过没有关系,接下来就来为大家分享关于德州扑克人工智能测试和为什么顶级围棋选手还可以和人工智能平分秋色而象棋选手却不能?的一些知识点,大家可以关注收藏,免得下次来找不到哦,下面我们开始吧!

本文目录

  1. 人工智能在智力运动领域未来将扮演什么角色?
  2. 神经科学会成为人工智能的另一个重要支撑点吗?
  3. 为什么顶级围棋选手还可以和人工智能平分秋色而象棋选手却不能?

人工智能在智力运动领域未来将扮演什么角色?

竟人工智能会不会取代人类工作还尚未可知,但伊隆·马斯克(ElonMusk)已经宣称,人工智能必将占领电子竞技的制高点。

硅谷"钢铁侠"伊隆·马斯克不光是特斯拉公司CEO,他还是人工智能非营利组织OpenAI的创始人。8月12日,马斯克在推特账号上宣布,由OpenAI开发的机器人在第七届DOTA2国际邀请赛(TI7)总决赛中挑战成功,击败了世界一流的职业电竞选手。

马斯克在推特上写道:"OpenAI搞出了史上首个击败电子竞技顶级玩家的人工智能,这可比搞国际象棋和围棋什么的复杂得多了。"

DOTA是一个"具有隐藏信息的复杂游戏,在游戏中玩家必须学会仔细规划,使用战略骗过对手并看准时机进行攻击"。玩家的技能和其每分钟的操作频率之间的并无太大关联,事实上,机器人每分钟的操作速度与一般的人类玩家是差不多的。

机器人这场获胜中,真正引人瞩目的是人工智能在比赛中预测出了对手下一步的动作,并迅速反应制定出对策。OpenAI表示:"我们的机器人完全凭借系统自主学习到了如何预测其他玩家的下一步动作、如何在不熟悉的情况下即兴发挥、以及如何影响其他玩家的组队配合来帮助自己获胜。"

Dota的完整游戏是由两队五人组成的。每个玩家选择一百个英雄和数百个物品。OpenAI的下一步是建立一个由Dota机器人组成的团队,这些机器人既可以和人类玩家竞争比赛,也可以在游戏中与人类合作打造更强战队。

随着人工智能机器人在国际象棋、围棋以及现如今电子竞技比赛中接连获胜,马斯克与扎克伯格这两位科技界的大佬之间"互怼"的核心问题也许会发生变化——过去马斯克曾坚定预测人工智能将威胁人类生存,如今两人的辩论方向也许会有人类生存转变为比赛。马斯克认为,人工智能机器人在任何比赛中都能打败人类。

观点取至网上。

神经科学会成为人工智能的另一个重要支撑点吗?

神经科学会成为人工智能的另一个重要支撑点吗?

神经科学:是指寻求解释神智活动的生物学机制,即细胞生物学和分子生物学机制的科学。神经科学寻求了解在发育过程中装配起来的神经回路是如何感受周围世界、如何实施行为的,它们又如何从记忆中找回知觉,一旦找回之后,它们还能对知觉的记忆有所作用。神经科学也寻求了解支持我们情绪生活的生物学基础,情绪如何使我们的思想改变颜色,以及当情绪、思想及动作的调节发生扭曲时为什么会有抑郁、狂躁、精神分裂症和阿尔茨海默症等病症。这都是些极端复杂的问题,其复杂程度远远超过任何我们在其他生物学领域中曾经面对的问题。

人工智能(ArtificialIntelligence):英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。

人工智能的定义可以分为两部分,即“人工”和“智能”。“人工”比较好理解,争议性也不大。有时我们会要考虑什么是人力所能及制造的,或者人自身的智能程度有没有高到可以创造人工智能的地步,等等。但总的来说,“人工系统”就是通常意义下的人工系统。

雷锋网AI科技评论按:继神经科学家成为机器学习领域会议的邀请演讲的常客以后,DeepMindAI博客今天也发出了一篇文章讲述他们对人工智能研究和神经科学研究协作的看法。他们觉得两个领域的协作不仅很有好处,而且现在已经变得紧迫。雷锋网AI科技评论编译如下。

人工智能近期取得了举世瞩目的成果,在学会玩Atari游戏、下围棋、德州扑克以后,它们现在生成的手写文本和对话也几乎跟人类的一样,可以做多种语言的翻译,甚至可以把生活照片变得和梵高的大作一样。这些进步要归功于新的统计方法和计算机不断增加的计算能力等一些原因。不过在一篇近期发表于「神经元」期刊的文章中,DeepMind的研究者们提出了这样的一个观点:来自实验和理论神经科学的想法对人工智能研究也大有帮助,而且往往被忽视了。

心理学和神经科学在AI的发展历程中扮演过重要的角色。DonaldHebb、WarrenMcCulloch、MarvinMinsky、GeoffHinton这些奠基人一开始的动力都是想要弄清大脑是如何工作的。然而实际上,从上个世纪晚期以来,在神经网络发展过程中起到重要作用的研究大多数都不是在数学和物理实验室中完成的,而要归功于心理学和神经生理学学科的研究者们。

在充满了挑战的现在,神经科学和人工智能领域携手研究的需求前所未有地强烈。

DeepMind的研究人员们认为,即便这两个领域都在飞速发展,研究者也应当抱有这种远见。他们急切地希望神经科学的研究者们可以和人工智能的研究者们一起找到一种共同的语言,可以让知识在两个领域之间自由地流动,从而推动两个领域内研究的长期共同进步。

DeepMind的研究人员们觉得AI研究中一个重要的因素是从神经科学中获得灵感,有两个原因。首先,神经科学可以帮助验证已有的AI技术。简单来说,如果研究者们发现的某些算法能够模仿大脑中的某个功能,这很有可能意味着这些研究是想着正确的方向去的。第二条原因是,神经科学可以在构建人造大脑时为新的算法类型和架构提供丰富的启发。以往的AI实现方案几乎都是基于逻辑的方法和理论性的数学模型,DeepMind的研究人员们认为神经科学可以发现多种可能对认知功能起到关键作用的生物计算方式,这样就可以对现有的方法和模型做出补充。

举一个近期的例子,经验的离线"回放"就是神经科学界的启发性的发现。生物大脑在活动期间会产生一些神经活动,然后在之后的睡眠或者安静休息的时候,大脑就会"回放"这些活动的短期模式。比如,当老鼠穿过迷宫的时候,跟地点相关的细胞就会在老鼠四处移动的过程中一直活动。等到老鼠休息的时候就可以再次在它的大脑中观察到同样的神经活动序列,仿佛老鼠们正在脑中想象它们当时的行动,然后用它们来优化未来的行为。这种猜测也得到了证实,如果干扰它们的"回放"过程,就会影响它们稍后再次进行同样任务时的表现。

DQN网络是一类通用智能体,它们可以持续地让自己的行为适应新环境,而"回放"就是DQN网络中的关键元素

如果说要造一个需要"睡觉"的智能体,听起来仿佛怪怪的,毕竟它们本来应该在制造它们的人睡觉以后还要能够反复琢磨计算问题才行。不过这种模式是DeepMind的deep-Q网络的关键部分,这个算法已经学会了搞定各种Atari2600游戏,表现远超人类,还仅仅需要原始的显示像素点和游戏分数作为输入就可以做到。这个DQN就通过存储一部分训练数据然后"离线"重看的方式模仿了"经验回放",让它能够再次从以往的成功或失败中学习。

类似这样的成功的验证成果让DeepMind的研究人员们有了很多信心,神经科学已然成为了他们的AI研究思路的重要来源。但是如果着眼未来,在他们需要帮忙解决高效学习、现实世界理解、想象等未解问题的时候,神经科学将会变得不可或缺。

想象力是人类和动物具有的一种非常重要的能力,让我们无需行动就可以对未来情境做出规划,避免了不少成本付出。举个简单的例子,比如规划假期,我们就要运用我们对世界的知识(脑内的"模型"),然后靠它对未来会发生什么做出预测,评估未来的状况,这样我们就可以决定要选哪条路、或者要装哪些晴朗的天气里穿的衣服。最前沿的人类神经科学研究已经开始能够揭露这种思考方式背后的计算和系统机制,但是真正应用到人工智能模型中的这些新理解还非常少。

神经科学和人工智能之间的历史故事悠久缠绵

另一件现代AI研究中的重要挑战是迁移学习,为了能够高效地应对新的状况,人造智能体们需要这种在现有知识基础上做出合理决定的能力。这方面人类已经很擅长了,随便一个会开车、会用电脑、能主持会议的人在面对不熟悉的汽车、不熟悉的操作系统、不熟悉的社交状况的时候都能够对付得来。

为了研究把这种能力赋予人造系统的可能性,研究者们已经开始着手做初步的尝试。比如一类称作"渐进网络"的新的网络架构就可以学会一个电脑游戏以后,根据这些知识学会玩另一个游戏。同样的架构也可以用来把从模拟机器人手臂上学到的知识迁移到真实的机器手臂上,极大地减少了训练时间。有意思的是,这些网络跟人类的序列学习模型有一些共同点。这些诱人的联系表明了未来的AI研究会有很多从神经科学的研究中学习的机会。

不过DeepMind的研究人员们认为知识的交换不应该是单向的,神经科学也可以从AI研究中获益。比如强化学习这一现代AI研究的主要方法之一,最开始来自于心理学领域的动物学习理论,然后被机器学习的研究者们发扬光大。这些想法后来也反哺回了神经科学研究中,帮助我们理解一些神经生理学现象,比如哺乳动物基底神经节中多巴胺神经元的激活特性。

这种来回交流对两个领域借助对方的见解不停发展至关重要,从而构建了一个正向的循环,其中AI研究者运用神经科学的想法构建新的技术,神经科学家可以从人造智能体的行为中更好地学习如何阐释生物大脑。确实,这样的循环能够得到加速,近期的技术发展功不可没,比如光遗传学就可以让我们精确地测量和控制大脑活动,从中获取的大量数据还可以用机器学习领域的工具进行分析。

所以DeepMind的研究人员们认为把智慧转化为算法,然后把算法和人类大脑相比较,已经成为当前至关重要的事情。他们希望AI可以成为创造新知识、推进科技探索前沿的工具,那么这样的做法不仅可以支持对AI的研究,更可以让大家更加理解自己的大脑中都发生了什么。这有可能照亮神经科学中最难解的神秘问题,比如创造力和梦的本质,甚至有一天可以解释意识是怎么回事。面对着这么多难题,让神经科学和人工智能联手向前已经变得前所未有地紧迫。

viaDeepMindBlog,雷锋网AI科技评论编译

ps:(小编这么勤快观众老爷不来波关注,不存在的,以上文章部分来自网络,不做任何商业用途,侵删,感谢!)

为什么顶级围棋选手还可以和人工智能平分秋色而象棋选手却不能?

科普一下。现在人工智能的发展已经到了在各种棋类游戏中没有人能战胜的阶段。人类围棋的顶尖棋手和AlphaGoMaster的网络对战成绩是0:60。而Master还不是AlphaGo的最高级版本。而1997年IBM的深蓝战胜了等级分排名世界第一的棋手加里·卡斯帕罗夫。战绩3.5:2.5(2胜1负3平)。19年后Google的AlphaGoMaster也战胜了等级分排名世界第一的棋手柯洁。

那么现在人类顶尖棋手和AI到底有多大差距呢?唯一战胜过AlphaGoLee的韩国著名顶尖棋手李世石的隐退棋是和韩国的AI韩豆下的。AI让两子,黑棋贴3又3/4子。在这种条件下开局AI的胜率已经无限接近于1%。但是结果还是AI2:1胜出了。

为什么AI会这么强大?它是怎么超越人类的呢?其实AI的成长过程一直是仿生的过程。所有的棋类比赛较量的都是规则下进行计算的能力。1997年版本的深蓝运算速度为每秒2亿步棋。1997年的深蓝可搜寻及估计随后的12步棋,而一名人类象棋好手大约可估计随后的10步棋。正如中国古代军事家孙子所说:"夫未战而庙算胜者,得算多也。未战而庙算不胜者,得算少也。多算胜,少算不胜,而况于无算乎!"。

那么为什么计算机要19年后才能在围棋上战胜人类呢?还是计算的问题。围棋对AI的挑战难点在棋盘空间。国际象棋的空间状态是1043。而围棋是10170个状态空间。这样的游戏具有高分支因子。围棋中的可能场景的数量要大于宇宙中的原子数。光照顾了棋局的宽度(变化)就照顾不了棋局的深度(考虑的步数)。所以围棋职业棋手2016年之前一致认为计算机不可能下过人类顶尖棋手。

从当时的情况看计算机确实是有点“机关算尽”了。于是科学家们开始研究新的思路。在资源有限的情况下人是怎么办的?最典型的例子是种花、果时要打尖、疏果。因为植物的营养是有限的。不打尖、疏果就不能得到好的结果。围棋棋盘上的空间状态虽然多但是每个空间状态的价值是不同的。所以对变化的计算要剪枝。问题转化为应该剪除谁?

解决这个问题的就是蒙特卡洛算法和神经元网络的深度学习。

什么是蒙特卡洛算法?举个例子:有一个箱子里边有无数个苹果。想找出最大的。但是人从外边看不到苹果的大小。每次可以随机取出一个。然后和上一次的比较。大的留下。这样重复100次、1000次之后是什么结果呢?留下的不一定是最大的苹果,但一定是在目前最接近最大苹果的苹果。

和蒙特卡洛算法对应的是拉斯维加斯算法。也举个例子:还是,一个箱子里边有无数把钥匙。想找出能打开一把锁的钥匙。还是每次可以随机取出一把来试。打不开扔掉。这样重复100次、1000次之后是什么结果呢?有可能碰上了,但是不保证一定能碰上。

人下棋时是通过过往的经验来做选择。AI也是通过过往的经验找出最接近正确答案的值给每一个选择点赋值。而人们看到的是每着的胜率。

AI是怎么给每一个选择点赋值的呢?这就离不开神经网络和深度学习。人能思考的物质基础是人的神经网络。AI的神经网络系统就是仿生的结果。有了这个物质基础就有了机器学习。深度学习是机器学习的一部分。深度学习是学习样本数据的内在规律和表示层次,这些学习过程中获得的信息对数据的解释有很大的帮助。它的最终目标是让机器能够像人一样具有分析学习能力。深度学习是一个复杂的机器学习算法,又分为有监督学习和无监督学习。

老师留作业,学生做习题集。其实就是一种有监督学习。通过做题掌握了解题规律。于是考试时只要是做过的题型基本上都会。

现实生活中还常常会有这样的问题:缺乏足够的先验知识,因此难以人工标注类别或进行人工类别标注的成本太高。很自然地,我们希望计算机能代我们完成这些工作,或至少提供一些帮助。比如在没有计算机的情况下人通过对大量的数据长期观察思考,找到了克山病的原因。但是这个研究发现其规律的过程长达几十年。AI的无监督学习就是模拟人的这个学习过程。可以加快人们对未知事物的理解。

深蓝和阿尔法狗最初都是用人类的棋谱喂养的。比如战胜李世石的AlphaGoLee就大约喂了16万人类棋谱和数万个人类人类总结的模式(定式)。但是最后开源的AlphaGoZero则是从零开始通过“左右互搏”自己通过超过1亿对局自己悟出的围棋真谛。自学成才的AlphaGoZero水平不但远超AlphaGoLee,就连横扫千军的AlphaGoMaster也不是AlphaGoZero的对手。这就是职业棋手说的AlphaGoLee的棋还能看出高明的地方(因为有人类的影子),AlphaGoZero的棋则净是看不懂的地方。许多过去的共识被纠正。数以万计的定式被废弃。

2005年左右《围棋天地》曾经有一个栏目是访问一线棋手:如果有围棋上帝的话你和他有多大差距。记得当时一致的看法是让两子。而现在顶尖棋手和AI的差距已经差了两个子。那么AI是不是围棋上帝呢?肯定不是。它只是接近最优解,而不是最优解。也就是说AI只是相对真理,是绝对真理的一部分。它并没有穷尽真理。最好的例子就是“芈氏飞刀”。这个定式是在流行AI定式的大形势下人类发明的定式。最开始AI也不认识,吃了亏后变成AI在一个时期里的常用定式。

AI的发展还远没有达到尽头。从AlphaGoLee到AlphaGoZero都有一个习惯就是见好就收。前边优势很大但是当它算到怎么下都能赢的时候就会退让。最后只赢一两目。作为人类棋手的陪练这是不称职的。所以人类要给它增加个性。中国的AI星阵就加入了“不退让”的个性。

曾经有人预言AI会使围棋衰落。我不这么认为。古代无论东西方绘画都有追求像的趋势。但是当照相机出现后,画得再像也赶不上照相机。但是绘画仍然向前发展并没有衰落。只不过现在追求的是意境和感受了。围棋在商业因素的影响下从两日制演变到包干制的快棋。人的能力在哪摆着,棋的质量不可能不受影响。当信奉“天下武功唯快不破”的时代遇到任谁也快不过的AI。这种“快”还有意义吗?

关于德州扑克人工智能测试到此分享完毕,希望能帮助到您。

德州扑克人工智能测试(为什么顶级围棋选手还可以和人工智能平分秋色而象棋选手却不能?)文档下载: PDF DOC TXT