简单介绍人工智能,举例简单介绍人工智能

Bitget下载

注册下载Bitget下载,邀请好友,即有机会赢取 3,000 USDT

APP下载   官网注册

各位老铁们好,相信很多人对简单介绍人工智能都不是特别的了解,因此呢,今天就来为大家分享下关于简单介绍人工智能以及举例简单介绍人工智能的问题知识,还望可以帮助大家,解决大家的一些困惑,下面一起来看看吧!

本文目录

  1. 人工智能到底有多厉害?
  2. 现在人工智能有哪些学派它们的认知观是什么
  3. 人工智能诞生的标志是什么
  4. 人工智能与信息技术基础理论知识

人工智能到底有多厉害?

1.什么是人工智能

人工智能(ArtificialIntelligence):它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。1956年由约翰.麦卡锡首次提出,当时的定义为“制造智能机器的科学与工程”。人工智能目的就是让机器能够像人一样思考,让机器拥有智能。时至今日,人工智能的内涵已经大大扩展,是一门交叉学科。

2.人工智能的层次结构

基础设施层:回顾人工智能发展史,每次基础设施的发展都显著地推动了算法层和技术层的演进。从20世纪70年代的计算机的兴起,80年代计算机的普及,90年代计算机运算速度和存储量的增加,互联网兴起带来的电子化,均产生了较大的推动作用。到21世纪,大规模集群的出现,大数据的积累,GPU与异构/低功耗芯片兴起带来的运算力的提升,促成了深度学习的诞生,点燃了人工智能的爆**潮,其中海量的训练数据是人工智能发展的重要燃料。

算法层:机器学习是指利用算法使计算机能够像人一样从数据中挖掘出信息,而深度学习作为机器学习的一个子集,相比于其他学习方法,使用了更多的参数、模型也更复杂,从而使得模型对数据的理解更加深入也更加智能。

计算机视觉:计算机视觉的历史可以追溯到1966年,人工智能学家Minsky在给学生布置的作业中,要求学生通过编写一个程序让计算机告诉我们它通过摄像头看到了什么,这也被认为是计算机视觉最早的任务描述。计算机视觉借鉴了人类看东西的方法,即“三维重构”与“先验知识库”。计算机视觉除了在比较成熟的安防领域外,也应用于金融领域的人脸识别身份验证、电商领域的商品拍照搜索、医疗领域的智能影像诊断、机器人/无人车上作为视觉输入系统等。

语音处理:让机器学会“听”和“说”,实现与人类的无障碍交流一直是人工智能、人机交互领域的一大梦想。1920年生产的“RadioRex”玩具狗可能是世界上最早的语音识别器,第一个真正基于语音识别系统出现在1952年,AT&T贝尔实验室开发的Audrey的语音识别系统,能够识别10个英文数字,正确率高达98%。比如AppleSiri,Echo等。

自然语言处理:人类的日常社会活动中,语言交流是不同个体间信息交换和沟通的重要途径。对机器而言,能否自然的与人类进行交流、理解人类表达的意思并作出合适的回应,被认为是衡量其智能程度的一个重要参照。

规划决策系统:人工智能规划决策系统的发展,一度是以棋类游戏为载体的。比如,AlphaGo战胜李世石,Master对顶级选手取得60连胜,机器人,无人车。

3.人工智能应用场景

3.1.语音处理

?语音处理主要是自动且准确的转录人类的语音。一个完整的语音处理系统,包括前端的信号处理、中间的语音语义识别和对话管理以及后期的语音合成。

–前端处理:说话人声检测,回声消除,唤醒词识别,麦克风阵列处理,语音增强等。

–语音识别:特征提取,模型自适应,声学模型,语言模型,动态解码等。

–语义识别和对话管理:更多属于自然语言处理的范畴。

–语音合成:文本分析、语言学分析、音长估算、发音参数估计等。

?应用:包括医疗听写、语音书写、电脑系统声控、电话客服等。

?未来:真正做到像正常人类一样,与他人流畅沟通,自由交流,还有待时日。

3.2.计算机视觉

?计算机视觉指计算机从图像中识别出物体、场景和活动的能力,包含图像处理、识别检测、分析理解等技术。

–图像处理:去噪声、去模糊、超分辨率处理、滤镜处理等。

–图像识别:过程包括图像预处理、图像分割、特征提取、判断匹配,可以用来处理分类、定位、检测、分割问题等。

–图像理解:本质是图像与文本间的交互,可用来执行基于文本的图像搜索、图像描述生成、图像问答等。

?应用:

–医疗成像分析被用来提高疾病的预测、诊断和治疗。

–在安防及监控领域被用来指认嫌疑人。

–在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多信息。

?未来:计算机视觉有望进入自主理解、分析决策的高级阶段,真正赋予机器“看”的能力,在无人车、智能家居等场景发挥更大的价值。

3.3.自然语言处理

?自然语言处理的几个核心环节:知识的获取与表达、自然语言理解、自然语言生成等,也相应出现了知识图谱、对话管理、机器翻译等研究方向。

–知识图谱:基于语义层面对知识进行组织后得到的结构化结果。

–对话管理:包含闲聊、问答、任务驱动型对话。

–机器翻译:由传统的PBMT方法到Google的GNMT,流畅度与正确率大幅提升。

?应用:搜索引擎、对话机器人、机器翻译、甚至高考机器人、办公智能秘书。

4.AI、机器学习、深度学习的关系

4.1.人工智能四要素

1)数据

如今这个时代,无时无刻不在产生大数据。移动设备、廉价的照相机、无处不在的传感器等等积累的数据。这些数据形式多样化,大部分都是非结构化数据。如果需要为人工智能算法所用,就需要进行大量的预处理过程。

2)算法

主流的算法主要分为传统的机器学习算法和神经网络算法。神经网络算法快速发展,近年来因为深度学习的发展到了高潮。

3)算力

人工智能的发展对算力提出了更高的要求。以下是各种芯片的计算能力对比。其中GPU领先其他芯片在人工智能领域中用的最广泛。GPU和CPU都擅长浮点计算,一般来说,GPU做浮点计算的能力是CPU的10倍左右。

另外深度学习加速框架通过在GPU之上进行优化,再次提升了GPU的计算性能,有利于加速神经网络的计算。如:cuDNN具有可定制的数据布局,支持四维张量的灵活维度排序,跨步和子区域,用作所有例程的输入和输出。在卷积神经网络的卷积运算中实现了矩阵运算,同时减少了内存,大大提升了神经网络的性能。

4)场景

人工智能经典的应用场景包括:

用户画像分析基于信用评分的风险控制欺诈检测智能投顾智能审核智能客服机器人机器翻译人脸识别

4.2.三者关系简述

人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法及应用系统的一门新的技术科学。

机器学习:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。是人工智能的核心研究领域之一,任何一个没有学习能力的系统都很难被认为是一个真正的智能系统。

深度学习:源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

现在人工智能有哪些学派它们的认知观是什么

人工智能各学派简介:符号主义,连接主义,行为主义人工智能各学派简介

目前人工智能的主要学派有下面三家:

(1)符号主义(symbolicism),又称为逻辑主义(logicism)、心理学派(psychologism)或计算机学派(computerism),其原理主要为物理符号系统(即符号操作系统)假设和有限合理性原理。

(2)连接主义(connectionism),又称为仿生学派(bionicsism)或生理学派(physiologism),其主要原理为神经网络及神经网络间的连接机制与学习算法。

(3)行为主义(actionism),又称为进化主义(evolutionism)或控制论学派(cyberneticsism),其原理为控制论及感知-动作型控制系统。

他们对人工智能发展历史具有不同的看法。

1、符号主义

认为人工智能源于数理逻辑。数理逻辑从19世纪末起得以迅速发展,到20世纪30年代开始用于描述智能行为。计算机出现后,又再计算机上实现了逻辑演绎系统。其有代表性的成果为启发式程序LT逻辑理论家,证明了38条数学定理,表了可以应用计算机研究人的思维多成,模拟人类智能活动。正是这些符号主义者,早在1956年首先采用“人工智能”这个术语。后来又发展了启发式算法->专家系统->知识工程理论与技术,并在20世纪80年代取得很大发展。符号主义曾长期一枝独秀,为人工智能的发展作出重要贡献,尤其是专家系统的成功开发与应用,为人工智能走向工程应用和实现理论联系实际具有特别重要的意义。在人工智能的其他学派出现之后,符号主义仍然是人工智能的主流派别。这个学派的代表任务有纽厄尔(Newell)、西蒙(Simon)和尼尔逊(Nilsson)等。

2、连接主义

认为人工智能源于仿生学,特别是对人脑模型的研究。它的代表性成果是1943年由生理学家麦卡洛克(McCulloch)和数理逻辑学家皮茨(Pitts)创立的脑模型,即MP模型,开创了用电子装置模仿人脑结构和功能的新途径。它从神经元开始进而研究神经网络模型和脑模型,开辟了人工智能的又一发展道路。20世纪60~70年代,连接主义,尤其是对以感知机(perceptron)为代表的脑模型的研究出现过热潮,由于受到当时的理论模型、生物原型和技术条件的限制,脑模型研究在20世纪70年代后期至80

人工智能诞生的标志是什么

人工智能诞生的标志是“达特茅斯会议”,1956年达特矛斯会议上提出的断言之一是“学习或者智能的任何其他特性的每一个方面都应能被精确地加以描述,使得机器可以对其进行模拟。”

这次会议上“ArtificialIntelligence”(人工智能)的名称和任务得以确定,同时出现了最初的成就和最早的一批研究者,因此这一事件被广泛承认为AI诞生的标志。

人工智能与信息技术基础理论知识

有关人工智能必知的基础知识,都在这里了。人工智能从诞生以来,理论和技术日益成熟,应用领域也不断扩大,可以设想,未来人工智能带来的科技产品,将会是人类智慧的“容器”。人工智能可以对人的意识、思维的信息过程的模拟。

如果要列举一项彻底改变了21世纪的技术,非人工智能莫属。人工智能已经成为我们日常生活的一部分,这篇文章将帮助读者了解人工智能的不同阶段和类别。

人工智能的概念

1956年,约翰·麦卡锡(JohnMcCarthy),计算科学与认知科学专家,美国斯坦福大学教授)如此定义“人工智能”一词——创造智能机器的科学和工程。

人工智能还可以被定义为计算机系统开发。此类计算机系统能够执行需要人类智能的任务,例如决策,对象检测,解决复杂问题等。

人工智能的发展阶段

很多文章都把人工智能分为通用人工智能(AGI)、专用人工智能(ANI)和人工超级智能(ASI)三种不同类型的人工智能。更确切地说,人工智能有三个阶段。

专用人工智能(ANI)

专用人工智能(ANI)也称为弱人工智能,是人工智能的一个发展阶段,涉及的机器只能执行一组狭义的特定任务。在这个阶段,机器不具备任何思考能力。它只是执行一组预设的功能。

弱人工智能的例子包括Siri(智能语音助手),Alexa(搜索引擎),自动驾驶汽车,Alpha-Go(人工智能机器人),Sophia(类人机器人)等。到目前为止,几乎所有基于人工智能的系统都属于弱人工智能类别。

通用人工智能(AGI)

通用人工智能(AGI)是人工智能的发展阶段,也被称为强人工智能。在这一阶段,机器将具有像我们人类一样思考和决策的能力。

目前还没有强人工智能的例子,但是,我们相信很快就能够创造出像人类一样聪明的机器。

很多科学家,包括斯蒂芬·霍金,觉得强人工智能会威胁人类的存在。霍金认为:“人工智能的完全发展可能意味着人类的终结......它将自行腾飞,并以不断增长的速度重新进行自我设计。人类受限于缓慢的生物进化过程,无法参与竞争,最终将被完全的人工智能取代。”

超级人工智能(ASI)

超级人工智能是人工智能超越人类的发展阶段。人工超级智能目前只是一个假设,就像电影和科幻小说描述的那样——机器统治世界。

考虑到目前的发展速度,机器离达到人工超级智能阶段并不遥远了。

人工智能的类型

当要求解释不同类型的人工智能系统时,必须根据其功能对人工智能进行分类。

基于人工智能系统的功能,人工智能可以分为以下类型:

反应性人工智能

这种类型的人工智能包括仅基于当前数据和情况运行的机器。反应性人工智能机器不能推断数据,评估人工智能未来的行为。他们可以执行范围缩小的预设任务。

IBM的象棋程序打败了世界冠军加里·卡斯帕罗夫。这就是一个反应性机器人的例子。

有限内存人工智能

顾名思义,有限内存人工智能可以通过研究其内存中的历史数据来做出明智的和改进的决策。这样的人工智能具有短暂或临时的记忆,可用于存储历史经验并评估未来的行为。

自动驾驶汽车是有限内存人工智能,它使用最近收集的数据做出即时决定。例如,自动驾驶汽车使用传感器识别横穿道路的平民,陡峭的道路,交通信号等,以做出更好的驾驶决定。这有助于阻止任何未来可能发生的事故。

心智理论人工智能

心智理论人工智能是一种更先进的人工智能。据推测,这类机器在心理学中起着重要作用。心智理论人工智能将主要关注情商,以便更好地理解人类的信念和思想。

心智理论人工智能尚未成熟,但人类在严谨地研究这一领域。

自我意识人工智能

让我们祈祷人工智能没有达到有自己的想法和自我意识的阶段。鉴于目前的情况,自我意识人工智能有些遥不可及。但是,将来自我意识人工智能可能会达到超级智能化阶段。

像埃隆·马斯克(ElonMusk)和斯蒂芬·霍金(StephenHawkings)这样的天才一直提醒人们警惕人工智能的进化。

人工智能的分支

人工智能通过执行以下程序/运用技巧,可以解决现实问题。

机器学习

机器学习是一门让机器通过翻译,处理和分析数据解决现实问题的科学。

在机器学习下面,有如下三个分类:

1.监督学习

2.无监督学习

3.强化学习

深度学习

深度学习是在高维数据上实现神经网络以获得洞察力和形成解决方案的过程。深度学习是机器学习的高级领域,可用于解决更高级的问题。

深度学习是Facebook面部识别算法,自动驾驶汽车,Siri,Alexa等虚拟助手背后的逻辑。

自然语言处理

自然语言处理(NLP)是指从人类自然语言中获取见解,与机器交流,拓展业务的科学。

Twitter使用自然语言处理技术在其推文中过滤掉带有恐怖主义色彩的词汇。亚马逊也使用该技术来了解客户评论,改善用户体验。

机器人学

机器人学是人工智能的一个分支,专注于机器人的不同分支和应用。人工智能机器人在现实环境中代理人类行动,通过可靠的行动来产生结果。

例如,索菲亚类人机器人就是机器人学分支下的人工智能。

模糊逻辑

模糊逻辑是一种基于“真实度”原则的计算方法,而不是通常的现代计算机逻辑,比如本质上的布尔值。

模糊逻辑用于医学领域以解决涉及决策的复杂问题。它们还用于自动变速箱,车辆环境控制等。

专家系统

专家系统是基于人工智能的计算机系统,它学习并回报人类专家的决策能力。

专家系统使用if-then逻辑符号来解决复杂问题。它们不依赖于传统的程序编程。专家系统主要用于信息管理,医疗设施,贷款分析,病毒检测等方面。

人工智能可以对人的意识、思维的信息过程的模拟。人工智能是一门极富挑战性的科学,从事这项工作的人必须懂得计算机知识,心理学和哲学。

关于简单介绍人工智能的内容到此结束,希望对大家有所帮助。

简单介绍人工智能,举例简单介绍人工智能文档下载: PDF DOC TXT