看病人工智能 人工智能看病

Bitget下载

注册下载Bitget下载,邀请好友,即有机会赢取 3,000 USDT

APP下载   官网注册

大家好,今天来为大家分享看病人工智能的一些知识点,和人工智能看病的问题解析,大家要是都明白,那么可以忽略,如果不太清楚的话可以看看本篇文章,相信很大概率可以解决您的问题,接下来我们就一起来看看吧!

本文目录

  1. 在医学中如何应用人工智能?
  2. 人工智能到底有多厉害?
  3. 如果有一天,医院里所有的医护人员都改由人工智能机器人来担任了,会发生什么事?
  4. 为什么人工智能要应用于医学领域

在医学中如何应用人工智能?

一项最新研究表明,在自闭症当中,基因之间发生的自发突变拥有与固有基因相等的重要作用。

这项研究被发表在5月27日的《自然——遗传学》当中,这也是全球第一项研究这些“非编码”突变对自闭症患者全基因组影响的研究。

过去三年当中,众多团队都在对自闭症患者DNA的基因内部以及不同基因之间关系进行测序。然而,对基因之间数十万种突变进行分类则几乎是一项不可能完成的任务,特别是考虑到研究人员对这些基因片段本身就知之甚少。

此次新研究通过利用机器学习方法克服了这一挑战。研究人员创建了一种算法,能够预测特定的非编码突变是否会产生某种基因表达。其根据每次突变的可能性为每个突变分配一个评分,用以表示其有害性程度。

论文联合作者、新泽西州普林斯顿大学综合基因组学教授OlgaTroyanskaya表示,“其中采取的独特方法在于,我们不仅仅是在计算突变,同时也利用基于深度学习的框架研究突变的影响。事实证明,基因突变也有重要与不重要之分,而且引发的效果也不尽相同。”

专家们表示,这项研究的优势在于其能够观察整个基因组中的自发性突变。

并未参与此项研究的芝加哥大学遗传学助理教授XinHe表示,此前对非编码突变的分析工作主要集中在特定区域,且通常是那些与基因最好为接近的区域。

他指出,“在本次研究中,面向的则是全基因组,我们可以看到一个明确的区别性信号。这也代表着一种令人印象深刻的结果。”

约束性条件:

Troyanskaya的团队和她的同事们分析了来自1790个家庭的7097个全基因组,这些家庭都有一个孩子患有自闭症,但同时父母以及至少一个兄弟姐妹则未罹患自闭症。他们在自闭症儿童当中发现了成千上万种自发性突变,但这些突变基本也出现在了未患自闭症的兄弟姐妹当中。他们创建的算法预测了突变破坏控制基因表达的基因组区域的可能性。

在此之后,该研究小组搜索了人类基因突变数据库,检查是否存在任何与医学状况有关的突变,或者其是否同样出现在对照组当中。他们汇总全部相关信息,以便为每一种突变生成影响评分。

研究人员发现,自闭症儿童的非编码突变平均影响评分确实高于未患疾病的兄弟姐妹。

总体而言,此项分析表明,这种突变导致4.3%的患儿罹患自闭症;相比之下,基因之内的有害突变则占比5.4%。

该小组还评估了突变对于信使RNA(mRNA)的影响。集合RNA属于基因与蛋白质之间的中介。他们发现,在自闭症儿童当中,破坏mRNA的突变比影响DNA的突变具有更大的实际影响。

并未参与此项研究的华盛顿州立大学斯波坎生物医学院医学科学助理教授LuciaPeixoto表示,“这是一项值得跟进的有趣事实。我认为很多研究人员并未把RNA处理视为自闭症的一大重要因素。”

研究人员发现,最接近自闭症儿童高影响非编码突变的基因往往具有直接影响脑组织的表达。

并未参与此项研究的英国牛津生物科学企业Genomics公司首席科学官JeffreyBarrett表示,“很高兴看到有诸多证据支持这一观点,即通过影响正在发育的大脑当中的非编码调控元素,确实有望解决自闭症以及其它神经发育障碍类疾病。”

邻近基因也倾向于参与自闭症中的病变过程,例如神经元信号传导或基因调控。这一途径与编码基因突变造成的破坏完全相同。

该小组还评估了高影响突变对培养细胞中基因表达的影响。他们发现,在大多数情况下,突变似乎都改变了基因的实际表达。

这一名为DeepSEA的算法目前已可在线获取。Troyanskaya及其同事正在将他们发现的方法应用于患有其他疾病的个体全基因组研究,包括先天性心脏病。

人工智能到底有多厉害?

1.什么是人工智能

人工智能(ArtificialIntelligence):它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。1956年由约翰.麦卡锡首次提出,当时的定义为“制造智能机器的科学与工程”。人工智能目的就是让机器能够像人一样思考,让机器拥有智能。时至今日,人工智能的内涵已经大大扩展,是一门交叉学科。

2.人工智能的层次结构

基础设施层:回顾人工智能发展史,每次基础设施的发展都显著地推动了算法层和技术层的演进。从20世纪70年代的计算机的兴起,80年代计算机的普及,90年代计算机运算速度和存储量的增加,互联网兴起带来的电子化,均产生了较大的推动作用。到21世纪,大规模集群的出现,大数据的积累,GPU与异构/低功耗芯片兴起带来的运算力的提升,促成了深度学习的诞生,点燃了人工智能的爆**潮,其中海量的训练数据是人工智能发展的重要燃料。

算法层:机器学习是指利用算法使计算机能够像人一样从数据中挖掘出信息,而深度学习作为机器学习的一个子集,相比于其他学习方法,使用了更多的参数、模型也更复杂,从而使得模型对数据的理解更加深入也更加智能。

计算机视觉:计算机视觉的历史可以追溯到1966年,人工智能学家Minsky在给学生布置的作业中,要求学生通过编写一个程序让计算机告诉我们它通过摄像头看到了什么,这也被认为是计算机视觉最早的任务描述。计算机视觉借鉴了人类看东西的方法,即“三维重构”与“先验知识库”。计算机视觉除了在比较成熟的安防领域外,也应用于金融领域的人脸识别身份验证、电商领域的商品拍照搜索、医疗领域的智能影像诊断、机器人/无人车上作为视觉输入系统等。

语音处理:让机器学会“听”和“说”,实现与人类的无障碍交流一直是人工智能、人机交互领域的一大梦想。1920年生产的“RadioRex”玩具狗可能是世界上最早的语音识别器,第一个真正基于语音识别系统出现在1952年,AT&T贝尔实验室开发的Audrey的语音识别系统,能够识别10个英文数字,正确率高达98%。比如AppleSiri,Echo等。

自然语言处理:人类的日常社会活动中,语言交流是不同个体间信息交换和沟通的重要途径。对机器而言,能否自然的与人类进行交流、理解人类表达的意思并作出合适的回应,被认为是衡量其智能程度的一个重要参照。

规划决策系统:人工智能规划决策系统的发展,一度是以棋类游戏为载体的。比如,AlphaGo战胜李世石,Master对顶级选手取得60连胜,机器人,无人车。

3.人工智能应用场景

3.1.语音处理

?语音处理主要是自动且准确的转录人类的语音。一个完整的语音处理系统,包括前端的信号处理、中间的语音语义识别和对话管理以及后期的语音合成。

–前端处理:说话人声检测,回声消除,唤醒词识别,麦克风阵列处理,语音增强等。

–语音识别:特征提取,模型自适应,声学模型,语言模型,动态解码等。

–语义识别和对话管理:更多属于自然语言处理的范畴。

–语音合成:文本分析、语言学分析、音长估算、发音参数估计等。

?应用:包括医疗听写、语音书写、电脑系统声控、电话客服等。

?未来:真正做到像正常人类一样,与他人流畅沟通,自由交流,还有待时日。

3.2.计算机视觉

?计算机视觉指计算机从图像中识别出物体、场景和活动的能力,包含图像处理、识别检测、分析理解等技术。

–图像处理:去噪声、去模糊、超分辨率处理、滤镜处理等。

–图像识别:过程包括图像预处理、图像分割、特征提取、判断匹配,可以用来处理分类、定位、检测、分割问题等。

–图像理解:本质是图像与文本间的交互,可用来执行基于文本的图像搜索、图像描述生成、图像问答等。

?应用:

–医疗成像分析被用来提高疾病的预测、诊断和治疗。

–在安防及监控领域被用来指认嫌疑人。

–在购物方面,消费者现在可以用智能手机拍摄下产品以获得更多信息。

?未来:计算机视觉有望进入自主理解、分析决策的高级阶段,真正赋予机器“看”的能力,在无人车、智能家居等场景发挥更大的价值。

3.3.自然语言处理

?自然语言处理的几个核心环节:知识的获取与表达、自然语言理解、自然语言生成等,也相应出现了知识图谱、对话管理、机器翻译等研究方向。

–知识图谱:基于语义层面对知识进行组织后得到的结构化结果。

–对话管理:包含闲聊、问答、任务驱动型对话。

–机器翻译:由传统的PBMT方法到Google的GNMT,流畅度与正确率大幅提升。

?应用:搜索引擎、对话机器人、机器翻译、甚至高考机器人、办公智能秘书。

4.AI、机器学习、深度学习的关系

4.1.人工智能四要素

1)数据

如今这个时代,无时无刻不在产生大数据。移动设备、廉价的照相机、无处不在的传感器等等积累的数据。这些数据形式多样化,大部分都是非结构化数据。如果需要为人工智能算法所用,就需要进行大量的预处理过程。

2)算法

主流的算法主要分为传统的机器学习算法和神经网络算法。神经网络算法快速发展,近年来因为深度学习的发展到了高潮。

3)算力

人工智能的发展对算力提出了更高的要求。以下是各种芯片的计算能力对比。其中GPU领先其他芯片在人工智能领域中用的最广泛。GPU和CPU都擅长浮点计算,一般来说,GPU做浮点计算的能力是CPU的10倍左右。

另外深度学习加速框架通过在GPU之上进行优化,再次提升了GPU的计算性能,有利于加速神经网络的计算。如:cuDNN具有可定制的数据布局,支持四维张量的灵活维度排序,跨步和子区域,用作所有例程的输入和输出。在卷积神经网络的卷积运算中实现了矩阵运算,同时减少了内存,大大提升了神经网络的性能。

4)场景

人工智能经典的应用场景包括:

用户画像分析基于信用评分的风险控制欺诈检测智能投顾智能审核智能客服机器人机器翻译人脸识别

4.2.三者关系简述

人工智能:是研究、开发用于模拟、延伸和扩展人的智能的理论、方法及应用系统的一门新的技术科学。

机器学习:专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。是人工智能的核心研究领域之一,任何一个没有学习能力的系统都很难被认为是一个真正的智能系统。

深度学习:源于人工神经网络的研究,含多隐层的多层感知器就是一种深度学习结构。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像,声音和文本。

如果有一天,医院里所有的医护人员都改由人工智能机器人来担任了,会发生什么事?

1.作为妇产科医生的我下岗了。(抱歉,我这个人比较自私,先想到的是我自己。)

2.医闹及伤医性事件,将永久性消失了。(就这点而言真的挺好,医院也安静了,新闻也安静了,如果真有个别人仍对医疗不满,伤害个机器人,应该不至于被判刑吧?)

3.将不存在医患关系这种关系了。(患者和机器人是什么关系?有待于进一步研究哈!)

4.国家不需要预防传染病医护感染了。(想想本次新冠疫情,那么多医疗防护物资,都给医务人员使用了,要是医务人员都是机器人就不用这么麻烦了。)

5.医护人员不用再为看病难、看病贵背锅了。(现实中,绝大部分医患纠纷的根源都来自于看病难看病贵,而这两点都不是医护人员决定的。但作为面对患者的第一窗口,很多就诊者自然而然的将矛头对准了医护人员。如果换成机器人,情况会明显不同。)

6.国家将省下大笔资金。(医护人员每月的工资、奖金、福利、待遇等,对财政来讲也是非常大的一项支出,尤其女医护人员还需要产假、哺乳假、生育险等等资金投入,机器人不需要这些,给点电就能上班。)

7.人工智能的服务将绝对一流。(医护人员在工作中,当面对巨大压力和繁重工作时,容易超出身体及心理承受能力,从而出现疲劳、烦躁的情绪,而人工智机器人,只要不断电一定会保持良好且稳定的状态。)

如此看来人工智能机器人代替医护人员优点多多,看来我得静待下岗的那一天了。

为什么人工智能要应用于医学领域

人工智能有利于临床决策,或者可以为临床决策提供依据。不过人工智能无法替代医生,至少目前来看。

第一,门诊中,通过数据整合处理分析,人工智能可以通过病人的病史、简单的临床表现等,给出临床决策建议。人工智能处理信息的容量高、速度快,对一些简单疾病可以迅速排查。如果发展到一定程度,这可以大大缩短门诊中的问诊时间。(当然,这是理想状态)

第二,便于对检查结果的分析处理。可以横向、纵向对比病人的检查结果,有利于建立病人的健康病例,同时对解决疑难杂症提供了新可能。以往冷门的疑难杂症,往往只能依靠医生本人的经验。如果数据库中有录入,那么见到类似的检查结果,人工智能可以第一时间筛查出,并提示风险。

第三,人工智能可以缓解部分医患矛盾。人工智能可以充当医患之间“解释”的角色,医生在诊疗中来不及或者没有说清楚的事项,人工智能可以在诊疗前后向患者解释清楚。这也是目前希望人工智能可能应用的场景之一。

但是,临床研究是严肃严谨的,人工智能目前的应用,仅仅在于慢病管理、简单的健康建议和笼统风险提示上。未来还有很长的路要走,才能达到以上的几点希望。当然,科技发展日新月异,希望那一天会更快到来。

好了,文章到此结束,希望可以帮助到大家。

看病人工智能 人工智能看病文档下载: PDF DOC TXT